"""Tests for user-friendly public interface to polynomial functions. """

import pickle

from sympy.polys.polytools import (
    Poly, PurePoly, poly,
    parallel_poly_from_expr,
    degree, degree_list,
    total_degree,
    LC, LM, LT,
    pdiv, prem, pquo, pexquo,
    div, rem, quo, exquo,
    half_gcdex, gcdex, invert,
    subresultants,
    resultant, discriminant,
    terms_gcd, cofactors,
    gcd, gcd_list,
    lcm, lcm_list,
    trunc,
    monic, content, primitive,
    compose, decompose,
    sturm,
    gff_list, gff,
    sqf_norm, sqf_part, sqf_list, sqf,
    factor_list, factor,
    intervals, refine_root, count_roots,
    real_roots, nroots, ground_roots,
    nth_power_roots_poly,
    cancel, reduced, groebner,
    GroebnerBasis, is_zero_dimensional,
    _torational_factor_list,
    to_rational_coeffs)

from sympy.polys.polyerrors import (
    MultivariatePolynomialError,
    ExactQuotientFailed,
    PolificationFailed,
    ComputationFailed,
    UnificationFailed,
    RefinementFailed,
    GeneratorsNeeded,
    GeneratorsError,
    PolynomialError,
    CoercionFailed,
    DomainError,
    OptionError,
    FlagError)

from sympy.polys.polyclasses import DMP

from sympy.polys.fields import field
from sympy.polys.domains import FF, ZZ, QQ, ZZ_I, QQ_I, RR, EX
from sympy.polys.domains.realfield import RealField
from sympy.polys.domains.complexfield import ComplexField
from sympy.polys.orderings import lex, grlex, grevlex

from sympy import (
    S, Integer, Rational, Float, Mul, Symbol, sqrt, Piecewise, Derivative,
    exp, sin, tanh, expand, oo, I, pi, re, im, rootof, Eq, Tuple, Expr, diff)

from sympy.core.add import Add
from sympy.core.basic import _aresame
from sympy.core.compatibility import iterable
from sympy.core.mul import _keep_coeff
from sympy.core.power import Pow
from sympy.testing.pytest import raises, warns_deprecated_sympy

from sympy.abc import a, b, c, d, p, q, t, w, x, y, z
from sympy import MatrixSymbol, Matrix


def _epsilon_eq(a, b):
    for u, v in zip(a, b):
        if abs(u - v) > 1e-10:
            return False
    return True


def _strict_eq(a, b):
    if type(a) == type(b):
        if iterable(a):
            if len(a) == len(b):
                return all(_strict_eq(c, d) for c, d in zip(a, b))
            else:
                return False
        else:
            return isinstance(a, Poly) and a.eq(b, strict=True)
    else:
        return False


def test_Poly_mixed_operations():
    p = Poly(x, x)
    with warns_deprecated_sympy():
        p * exp(x)
    with warns_deprecated_sympy():
        p + exp(x)
    with warns_deprecated_sympy():
        p - exp(x)


def test_Poly_from_dict():
    K = FF(3)

    assert Poly.from_dict(
        {0: 1, 1: 2}, gens=x, domain=K).rep == DMP([K(2), K(1)], K)
    assert Poly.from_dict(
        {0: 1, 1: 5}, gens=x, domain=K).rep == DMP([K(2), K(1)], K)

    assert Poly.from_dict(
        {(0,): 1, (1,): 2}, gens=x, domain=K).rep == DMP([K(2), K(1)], K)
    assert Poly.from_dict(
        {(0,): 1, (1,): 5}, gens=x, domain=K).rep == DMP([K(2), K(1)], K)

    assert Poly.from_dict({(0, 0): 1, (1, 1): 2}, gens=(
        x, y), domain=K).rep == DMP([[K(2), K(0)], [K(1)]], K)

    assert Poly.from_dict({0: 1, 1: 2}, gens=x).rep == DMP([ZZ(2), ZZ(1)], ZZ)
    assert Poly.from_dict(
        {0: 1, 1: 2}, gens=x, field=True).rep == DMP([QQ(2), QQ(1)], QQ)

    assert Poly.from_dict(
        {0: 1, 1: 2}, gens=x, domain=ZZ).rep == DMP([ZZ(2), ZZ(1)], ZZ)
    assert Poly.from_dict(
        {0: 1, 1: 2}, gens=x, domain=QQ).rep == DMP([QQ(2), QQ(1)], QQ)

    assert Poly.from_dict(
        {(0,): 1, (1,): 2}, gens=x).rep == DMP([ZZ(2), ZZ(1)], ZZ)
    assert Poly.from_dict(
        {(0,): 1, (1,): 2}, gens=x, field=True).rep == DMP([QQ(2), QQ(1)], QQ)

    assert Poly.from_dict(
        {(0,): 1, (1,): 2}, gens=x, domain=ZZ).rep == DMP([ZZ(2), ZZ(1)], ZZ)
    assert Poly.from_dict(
        {(0,): 1, (1,): 2}, gens=x, domain=QQ).rep == DMP([QQ(2), QQ(1)], QQ)

    assert Poly.from_dict({(1,): sin(y)}, gens=x, composite=False) == \
        Poly(sin(y)*x, x, domain='EX')
    assert Poly.from_dict({(1,): y}, gens=x, composite=False) == \
        Poly(y*x, x, domain='EX')
    assert Poly.from_dict({(1, 1): 1}, gens=(x, y), composite=False) == \
        Poly(x*y, x, y, domain='ZZ')
    assert Poly.from_dict({(1, 0): y}, gens=(x, z), composite=False) == \
        Poly(y*x, x, z, domain='EX')


def test_Poly_from_list():
    K = FF(3)

    assert Poly.from_list([2, 1], gens=x, domain=K).rep == DMP([K(2), K(1)], K)
    assert Poly.from_list([5, 1], gens=x, domain=K).rep == DMP([K(2), K(1)], K)

    assert Poly.from_list([2, 1], gens=x).rep == DMP([ZZ(2), ZZ(1)], ZZ)
    assert Poly.from_list([2, 1], gens=x, field=True).rep == DMP([QQ(2), QQ(1)], QQ)

    assert Poly.from_list([2, 1], gens=x, domain=ZZ).rep == DMP([ZZ(2), ZZ(1)], ZZ)
    assert Poly.from_list([2, 1], gens=x, domain=QQ).rep == DMP([QQ(2), QQ(1)], QQ)

    assert Poly.from_list([0, 1.0], gens=x).rep == DMP([RR(1.0)], RR)
    assert Poly.from_list([1.0, 0], gens=x).rep == DMP([RR(1.0), RR(0.0)], RR)

    raises(MultivariatePolynomialError, lambda: Poly.from_list([[]], gens=(x, y)))


def test_Poly_from_poly():
    f = Poly(x + 7, x, domain=ZZ)
    g = Poly(x + 2, x, modulus=3)
    h = Poly(x + y, x, y, domain=ZZ)

    K = FF(3)

    assert Poly.from_poly(f) == f
    assert Poly.from_poly(f, domain=K).rep == DMP([K(1), K(1)], K)
    assert Poly.from_poly(f, domain=ZZ).rep == DMP([1, 7], ZZ)
    assert Poly.from_poly(f, domain=QQ).rep == DMP([1, 7], QQ)

    assert Poly.from_poly(f, gens=x) == f
    assert Poly.from_poly(f, gens=x, domain=K).rep == DMP([K(1), K(1)], K)
    assert Poly.from_poly(f, gens=x, domain=ZZ).rep == DMP([1, 7], ZZ)
    assert Poly.from_poly(f, gens=x, domain=QQ).rep == DMP([1, 7], QQ)

    assert Poly.from_poly(f, gens=y) == Poly(x + 7, y, domain='ZZ[x]')
    raises(CoercionFailed, lambda: Poly.from_poly(f, gens=y, domain=K))
    raises(CoercionFailed, lambda: Poly.from_poly(f, gens=y, domain=ZZ))
    raises(CoercionFailed, lambda: Poly.from_poly(f, gens=y, domain=QQ))

    assert Poly.from_poly(f, gens=(x, y)) == Poly(x + 7, x, y, domain='ZZ')
    assert Poly.from_poly(
        f, gens=(x, y), domain=ZZ) == Poly(x + 7, x, y, domain='ZZ')
    assert Poly.from_poly(
        f, gens=(x, y), domain=QQ) == Poly(x + 7, x, y, domain='QQ')
    assert Poly.from_poly(
        f, gens=(x, y), modulus=3) == Poly(x + 7, x, y, domain='FF(3)')

    K = FF(2)

    assert Poly.from_poly(g) == g
    assert Poly.from_poly(g, domain=ZZ).rep == DMP([1, -1], ZZ)
    raises(CoercionFailed, lambda: Poly.from_poly(g, domain=QQ))
    assert Poly.from_poly(g, domain=K).rep == DMP([K(1), K(0)], K)

    assert Poly.from_poly(g, gens=x) == g
    assert Poly.from_poly(g, gens=x, domain=ZZ).rep == DMP([1, -1], ZZ)
    raises(CoercionFailed, lambda: Poly.from_poly(g, gens=x, domain=QQ))
    assert Poly.from_poly(g, gens=x, domain=K).rep == DMP([K(1), K(0)], K)

    K = FF(3)

    assert Poly.from_poly(h) == h
    assert Poly.from_poly(
        h, domain=ZZ).rep == DMP([[ZZ(1)], [ZZ(1), ZZ(0)]], ZZ)
    assert Poly.from_poly(
        h, domain=QQ).rep == DMP([[QQ(1)], [QQ(1), QQ(0)]], QQ)
    assert Poly.from_poly(h, domain=K).rep == DMP([[K(1)], [K(1), K(0)]], K)

    assert Poly.from_poly(h, gens=x) == Poly(x + y, x, domain=ZZ[y])
    raises(CoercionFailed, lambda: Poly.from_poly(h, gens=x, domain=ZZ))
    assert Poly.from_poly(
        h, gens=x, domain=ZZ[y]) == Poly(x + y, x, domain=ZZ[y])
    raises(CoercionFailed, lambda: Poly.from_poly(h, gens=x, domain=QQ))
    assert Poly.from_poly(
        h, gens=x, domain=QQ[y]) == Poly(x + y, x, domain=QQ[y])
    raises(CoercionFailed, lambda: Poly.from_poly(h, gens=x, modulus=3))

    assert Poly.from_poly(h, gens=y) == Poly(x + y, y, domain=ZZ[x])
    raises(CoercionFailed, lambda: Poly.from_poly(h, gens=y, domain=ZZ))
    assert Poly.from_poly(
        h, gens=y, domain=ZZ[x]) == Poly(x + y, y, domain=ZZ[x])
    raises(CoercionFailed, lambda: Poly.from_poly(h, gens=y, domain=QQ))
    assert Poly.from_poly(
        h, gens=y, domain=QQ[x]) == Poly(x + y, y, domain=QQ[x])
    raises(CoercionFailed, lambda: Poly.from_poly(h, gens=y, modulus=3))

    assert Poly.from_poly(h, gens=(x, y)) == h
    assert Poly.from_poly(
        h, gens=(x, y), domain=ZZ).rep == DMP([[ZZ(1)], [ZZ(1), ZZ(0)]], ZZ)
    assert Poly.from_poly(
        h, gens=(x, y), domain=QQ).rep == DMP([[QQ(1)], [QQ(1), QQ(0)]], QQ)
    assert Poly.from_poly(
        h, gens=(x, y), domain=K).rep == DMP([[K(1)], [K(1), K(0)]], K)

    assert Poly.from_poly(
        h, gens=(y, x)).rep == DMP([[ZZ(1)], [ZZ(1), ZZ(0)]], ZZ)
    assert Poly.from_poly(
        h, gens=(y, x), domain=ZZ).rep == DMP([[ZZ(1)], [ZZ(1), ZZ(0)]], ZZ)
    assert Poly.from_poly(
        h, gens=(y, x), domain=QQ).rep == DMP([[QQ(1)], [QQ(1), QQ(0)]], QQ)
    assert Poly.from_poly(
        h, gens=(y, x), domain=K).rep == DMP([[K(1)], [K(1), K(0)]], K)

    assert Poly.from_poly(
        h, gens=(x, y), field=True).rep == DMP([[QQ(1)], [QQ(1), QQ(0)]], QQ)
    assert Poly.from_poly(
        h, gens=(x, y), field=True).rep == DMP([[QQ(1)], [QQ(1), QQ(0)]], QQ)


def test_Poly_from_expr():
    raises(GeneratorsNeeded, lambda: Poly.from_expr(S.Zero))
    raises(GeneratorsNeeded, lambda: Poly.from_expr(S(7)))

    F3 = FF(3)

    assert Poly.from_expr(x + 5, domain=F3).rep == DMP([F3(1), F3(2)], F3)
    assert Poly.from_expr(y + 5, domain=F3).rep == DMP([F3(1), F3(2)], F3)

    assert Poly.from_expr(x + 5, x, domain=F3).rep == DMP([F3(1), F3(2)], F3)
    assert Poly.from_expr(y + 5, y, domain=F3).rep == DMP([F3(1), F3(2)], F3)

    assert Poly.from_expr(x + y, domain=F3).rep == DMP([[F3(1)], [F3(1), F3(0)]], F3)
    assert Poly.from_expr(x + y, x, y, domain=F3).rep == DMP([[F3(1)], [F3(1), F3(0)]], F3)

    assert Poly.from_expr(x + 5).rep == DMP([1, 5], ZZ)
    assert Poly.from_expr(y + 5).rep == DMP([1, 5], ZZ)

    assert Poly.from_expr(x + 5, x).rep == DMP([1, 5], ZZ)
    assert Poly.from_expr(y + 5, y).rep == DMP([1, 5], ZZ)

    assert Poly.from_expr(x + 5, domain=ZZ).rep == DMP([1, 5], ZZ)
    assert Poly.from_expr(y + 5, domain=ZZ).rep == DMP([1, 5], ZZ)

    assert Poly.from_expr(x + 5, x, domain=ZZ).rep == DMP([1, 5], ZZ)
    assert Poly.from_expr(y + 5, y, domain=ZZ).rep == DMP([1, 5], ZZ)

    assert Poly.from_expr(x + 5, x, y, domain=ZZ).rep == DMP([[1], [5]], ZZ)
    assert Poly.from_expr(y + 5, x, y, domain=ZZ).rep == DMP([[1, 5]], ZZ)


def test_poly_from_domain_element():
    dom = ZZ[x]
    assert Poly(dom(x+1), y, domain=dom).rep == DMP([dom(x+1)], dom)
    dom = dom.get_field()
    assert Poly(dom(x+1), y, domain=dom).rep == DMP([dom(x+1)], dom)

    dom = QQ[x]
    assert Poly(dom(x+1), y, domain=dom).rep == DMP([dom(x+1)], dom)
    dom = dom.get_field()
    assert Poly(dom(x+1), y, domain=dom).rep == DMP([dom(x+1)], dom)

    dom = ZZ.old_poly_ring(x)
    assert Poly(dom([1, 1]), y, domain=dom).rep == DMP([dom([1, 1])], dom)
    dom = dom.get_field()
    assert Poly(dom([1, 1]), y, domain=dom).rep == DMP([dom([1, 1])], dom)

    dom = QQ.old_poly_ring(x)
    assert Poly(dom([1, 1]), y, domain=dom).rep == DMP([dom([1, 1])], dom)
    dom = dom.get_field()
    assert Poly(dom([1, 1]), y, domain=dom).rep == DMP([dom([1, 1])], dom)

    dom = QQ.algebraic_field(I)
    assert Poly(dom([1, 1]), x, domain=dom).rep == DMP([dom([1, 1])], dom)


def test_Poly__new__():
    raises(GeneratorsError, lambda: Poly(x + 1, x, x))

    raises(GeneratorsError, lambda: Poly(x + y, x, y, domain=ZZ[x]))
    raises(GeneratorsError, lambda: Poly(x + y, x, y, domain=ZZ[y]))

    raises(OptionError, lambda: Poly(x, x, symmetric=True))
    raises(OptionError, lambda: Poly(x + 2, x, modulus=3, domain=QQ))

    raises(OptionError, lambda: Poly(x + 2, x, domain=ZZ, gaussian=True))
    raises(OptionError, lambda: Poly(x + 2, x, modulus=3, gaussian=True))

    raises(OptionError, lambda: Poly(x + 2, x, domain=ZZ, extension=[sqrt(3)]))
    raises(OptionError, lambda: Poly(x + 2, x, modulus=3, extension=[sqrt(3)]))

    raises(OptionError, lambda: Poly(x + 2, x, domain=ZZ, extension=True))
    raises(OptionError, lambda: Poly(x + 2, x, modulus=3, extension=True))

    raises(OptionError, lambda: Poly(x + 2, x, domain=ZZ, greedy=True))
    raises(OptionError, lambda: Poly(x + 2, x, domain=QQ, field=True))

    raises(OptionError, lambda: Poly(x + 2, x, domain=ZZ, greedy=False))
    raises(OptionError, lambda: Poly(x + 2, x, domain=QQ, field=False))

    raises(NotImplementedError, lambda: Poly(x + 1, x, modulus=3, order='grlex'))
    raises(NotImplementedError, lambda: Poly(x + 1, x, order='grlex'))

    raises(GeneratorsNeeded, lambda: Poly({1: 2, 0: 1}))
    raises(GeneratorsNeeded, lambda: Poly([2, 1]))
    raises(GeneratorsNeeded, lambda: Poly((2, 1)))

    raises(GeneratorsNeeded, lambda: Poly(1))

    f = a*x**2 + b*x + c

    assert Poly({2: a, 1: b, 0: c}, x) == f
    assert Poly(iter([a, b, c]), x) == f
    assert Poly([a, b, c], x) == f
    assert Poly((a, b, c), x) == f

    f = Poly({}, x, y, z)

    assert f.gens == (x, y, z) and f.as_expr() == 0

    assert Poly(Poly(a*x + b*y, x, y), x) == Poly(a*x + b*y, x)

    assert Poly(3*x**2 + 2*x + 1, domain='ZZ').all_coeffs() == [3, 2, 1]
    assert Poly(3*x**2 + 2*x + 1, domain='QQ').all_coeffs() == [3, 2, 1]
    assert Poly(3*x**2 + 2*x + 1, domain='RR').all_coeffs() == [3.0, 2.0, 1.0]

    raises(CoercionFailed, lambda: Poly(3*x**2/5 + x*Rational(2, 5) + 1, domain='ZZ'))
    assert Poly(
        3*x**2/5 + x*Rational(2, 5) + 1, domain='QQ').all_coeffs() == [Rational(3, 5), Rational(2, 5), 1]
    assert _epsilon_eq(
        Poly(3*x**2/5 + x*Rational(2, 5) + 1, domain='RR').all_coeffs(), [0.6, 0.4, 1.0])

    assert Poly(3.0*x**2 + 2.0*x + 1, domain='ZZ').all_coeffs() == [3, 2, 1]
    assert Poly(3.0*x**2 + 2.0*x + 1, domain='QQ').all_coeffs() == [3, 2, 1]
    assert Poly(
        3.0*x**2 + 2.0*x + 1, domain='RR').all_coeffs() == [3.0, 2.0, 1.0]

    raises(CoercionFailed, lambda: Poly(3.1*x**2 + 2.1*x + 1, domain='ZZ'))
    assert Poly(3.1*x**2 + 2.1*x + 1, domain='QQ').all_coeffs() == [Rational(31, 10), Rational(21, 10), 1]
    assert Poly(3.1*x**2 + 2.1*x + 1, domain='RR').all_coeffs() == [3.1, 2.1, 1.0]

    assert Poly({(2, 1): 1, (1, 2): 2, (1, 1): 3}, x, y) == \
        Poly(x**2*y + 2*x*y**2 + 3*x*y, x, y)

    assert Poly(x**2 + 1, extension=I).get_domain() == QQ.algebraic_field(I)

    f = 3*x**5 - x**4 + x**3 - x** 2 + 65538

    assert Poly(f, x, modulus=65537, symmetric=True) == \
        Poly(3*x**5 - x**4 + x**3 - x** 2 + 1, x, modulus=65537,
             symmetric=True)
    assert Poly(f, x, modulus=65537, symmetric=False) == \
        Poly(3*x**5 + 65536*x**4 + x**3 + 65536*x** 2 + 1, x,
             modulus=65537, symmetric=False)

    assert isinstance(Poly(x**2 + x + 1.0).get_domain(), RealField)
    assert isinstance(Poly(x**2 + x + I + 1.0).get_domain(), ComplexField)


def test_Poly__args():
    assert Poly(x**2 + 1).args == (x**2 + 1, x)


def test_Poly__gens():
    assert Poly((x - p)*(x - q), x).gens == (x,)
    assert Poly((x - p)*(x - q), p).gens == (p,)
    assert Poly((x - p)*(x - q), q).gens == (q,)

    assert Poly((x - p)*(x - q), x, p).gens == (x, p)
    assert Poly((x - p)*(x - q), x, q).gens == (x, q)

    assert Poly((x - p)*(x - q), x, p, q).gens == (x, p, q)
    assert Poly((x - p)*(x - q), p, x, q).gens == (p, x, q)
    assert Poly((x - p)*(x - q), p, q, x).gens == (p, q, x)

    assert Poly((x - p)*(x - q)).gens == (x, p, q)

    assert Poly((x - p)*(x - q), sort='x > p > q').gens == (x, p, q)
    assert Poly((x - p)*(x - q), sort='p > x > q').gens == (p, x, q)
    assert Poly((x - p)*(x - q), sort='p > q > x').gens == (p, q, x)

    assert Poly((x - p)*(x - q), x, p, q, sort='p > q > x').gens == (x, p, q)

    assert Poly((x - p)*(x - q), wrt='x').gens == (x, p, q)
    assert Poly((x - p)*(x - q), wrt='p').gens == (p, x, q)
    assert Poly((x - p)*(x - q), wrt='q').gens == (q, x, p)

    assert Poly((x - p)*(x - q), wrt=x).gens == (x, p, q)
    assert Poly((x - p)*(x - q), wrt=p).gens == (p, x, q)
    assert Poly((x - p)*(x - q), wrt=q).gens == (q, x, p)

    assert Poly((x - p)*(x - q), x, p, q, wrt='p').gens == (x, p, q)

    assert Poly((x - p)*(x - q), wrt='p', sort='q > x').gens == (p, q, x)
    assert Poly((x - p)*(x - q), wrt='q', sort='p > x').gens == (q, p, x)


def test_Poly_zero():
    assert Poly(x).zero == Poly(0, x, domain=ZZ)
    assert Poly(x/2).zero == Poly(0, x, domain=QQ)


def test_Poly_one():
    assert Poly(x).one == Poly(1, x, domain=ZZ)
    assert Poly(x/2).one == Poly(1, x, domain=QQ)


def test_Poly__unify():
    raises(UnificationFailed, lambda: Poly(x)._unify(y))

    F3 = FF(3)
    F5 = FF(5)

    assert Poly(x, x, modulus=3)._unify(Poly(y, y, modulus=3))[2:] == (
        DMP([[F3(1)], []], F3), DMP([[F3(1), F3(0)]], F3))
    assert Poly(x, x, modulus=3)._unify(Poly(y, y, modulus=5))[2:] == (
        DMP([[F5(1)], []], F5), DMP([[F5(1), F5(0)]], F5))

    assert Poly(y, x, y)._unify(Poly(x, x, modulus=3))[2:] == (DMP([[F3(1), F3(0)]], F3), DMP([[F3(1)], []], F3))
    assert Poly(x, x, modulus=3)._unify(Poly(y, x, y))[2:] == (DMP([[F3(1)], []], F3), DMP([[F3(1), F3(0)]], F3))

    assert Poly(x + 1, x)._unify(Poly(x + 2, x))[2:] == (DMP([1, 1], ZZ), DMP([1, 2], ZZ))
    assert Poly(x + 1, x, domain='QQ')._unify(Poly(x + 2, x))[2:] == (DMP([1, 1], QQ), DMP([1, 2], QQ))
    assert Poly(x + 1, x)._unify(Poly(x + 2, x, domain='QQ'))[2:] == (DMP([1, 1], QQ), DMP([1, 2], QQ))

    assert Poly(x + 1, x)._unify(Poly(x + 2, x, y))[2:] == (DMP([[1], [1]], ZZ), DMP([[1], [2]], ZZ))
    assert Poly(x + 1, x, domain='QQ')._unify(Poly(x + 2, x, y))[2:] == (DMP([[1], [1]], QQ), DMP([[1], [2]], QQ))
    assert Poly(x + 1, x)._unify(Poly(x + 2, x, y, domain='QQ'))[2:] == (DMP([[1], [1]], QQ), DMP([[1], [2]], QQ))

    assert Poly(x + 1, x, y)._unify(Poly(x + 2, x))[2:] == (DMP([[1], [1]], ZZ), DMP([[1], [2]], ZZ))
    assert Poly(x + 1, x, y, domain='QQ')._unify(Poly(x + 2, x))[2:] == (DMP([[1], [1]], QQ), DMP([[1], [2]], QQ))
    assert Poly(x + 1, x, y)._unify(Poly(x + 2, x, domain='QQ'))[2:] == (DMP([[1], [1]], QQ), DMP([[1], [2]], QQ))

    assert Poly(x + 1, x, y)._unify(Poly(x + 2, x, y))[2:] == (DMP([[1], [1]], ZZ), DMP([[1], [2]], ZZ))
    assert Poly(x + 1, x, y, domain='QQ')._unify(Poly(x + 2, x, y))[2:] == (DMP([[1], [1]], QQ), DMP([[1], [2]], QQ))
    assert Poly(x + 1, x, y)._unify(Poly(x + 2, x, y, domain='QQ'))[2:] == (DMP([[1], [1]], QQ), DMP([[1], [2]], QQ))

    assert Poly(x + 1, x)._unify(Poly(x + 2, y, x))[2:] == (DMP([[1, 1]], ZZ), DMP([[1, 2]], ZZ))
    assert Poly(x + 1, x, domain='QQ')._unify(Poly(x + 2, y, x))[2:] == (DMP([[1, 1]], QQ), DMP([[1, 2]], QQ))
    assert Poly(x + 1, x)._unify(Poly(x + 2, y, x, domain='QQ'))[2:] == (DMP([[1, 1]], QQ), DMP([[1, 2]], QQ))

    assert Poly(x + 1, y, x)._unify(Poly(x + 2, x))[2:] == (DMP([[1, 1]], ZZ), DMP([[1, 2]], ZZ))
    assert Poly(x + 1, y, x, domain='QQ')._unify(Poly(x + 2, x))[2:] == (DMP([[1, 1]], QQ), DMP([[1, 2]], QQ))
    assert Poly(x + 1, y, x)._unify(Poly(x + 2, x, domain='QQ'))[2:] == (DMP([[1, 1]], QQ), DMP([[1, 2]], QQ))

    assert Poly(x + 1, x, y)._unify(Poly(x + 2, y, x))[2:] == (DMP([[1], [1]], ZZ), DMP([[1], [2]], ZZ))
    assert Poly(x + 1, x, y, domain='QQ')._unify(Poly(x + 2, y, x))[2:] == (DMP([[1], [1]], QQ), DMP([[1], [2]], QQ))
    assert Poly(x + 1, x, y)._unify(Poly(x + 2, y, x, domain='QQ'))[2:] == (DMP([[1], [1]], QQ), DMP([[1], [2]], QQ))

    assert Poly(x + 1, y, x)._unify(Poly(x + 2, x, y))[2:] == (DMP([[1, 1]], ZZ), DMP([[1, 2]], ZZ))
    assert Poly(x + 1, y, x, domain='QQ')._unify(Poly(x + 2, x, y))[2:] == (DMP([[1, 1]], QQ), DMP([[1, 2]], QQ))
    assert Poly(x + 1, y, x)._unify(Poly(x + 2, x, y, domain='QQ'))[2:] == (DMP([[1, 1]], QQ), DMP([[1, 2]], QQ))

    assert Poly(x**2 + I, x, domain=ZZ_I).unify(Poly(x**2 + sqrt(2), x, extension=True)) == \
            (Poly(x**2 + I, x, domain='QQ<sqrt(2) + I>'), Poly(x**2 + sqrt(2), x, domain='QQ<sqrt(2) + I>'))

    F, A, B = field("a,b", ZZ)

    assert Poly(a*x, x, domain='ZZ[a]')._unify(Poly(a*b*x, x, domain='ZZ(a,b)'))[2:] == \
        (DMP([A, F(0)], F.to_domain()), DMP([A*B, F(0)], F.to_domain()))

    assert Poly(a*x, x, domain='ZZ(a)')._unify(Poly(a*b*x, x, domain='ZZ(a,b)'))[2:] == \
        (DMP([A, F(0)], F.to_domain()), DMP([A*B, F(0)], F.to_domain()))

    raises(CoercionFailed, lambda: Poly(Poly(x**2 + x**2*z, y, field=True), domain='ZZ(x)'))

    f = Poly(t**2 + t/3 + x, t, domain='QQ(x)')
    g = Poly(t**2 + t/3 + x, t, domain='QQ[x]')

    assert f._unify(g)[2:] == (f.rep, f.rep)


def test_Poly_free_symbols():
    assert Poly(x**2 + 1).free_symbols == {x}
    assert Poly(x**2 + y*z).free_symbols == {x, y, z}
    assert Poly(x**2 + y*z, x).free_symbols == {x, y, z}
    assert Poly(x**2 + sin(y*z)).free_symbols == {x, y, z}
    assert Poly(x**2 + sin(y*z), x).free_symbols == {x, y, z}
    assert Poly(x**2 + sin(y*z), x, domain=EX).free_symbols == {x, y, z}
    assert Poly(1 + x + x**2, x, y, z).free_symbols == {x}
    assert Poly(x + sin(y), z).free_symbols == {x, y}


def test_PurePoly_free_symbols():
    assert PurePoly(x**2 + 1).free_symbols == set()
    assert PurePoly(x**2 + y*z).free_symbols == set()
    assert PurePoly(x**2 + y*z, x).free_symbols == {y, z}
    assert PurePoly(x**2 + sin(y*z)).free_symbols == set()
    assert PurePoly(x**2 + sin(y*z), x).free_symbols == {y, z}
    assert PurePoly(x**2 + sin(y*z), x, domain=EX).free_symbols == {y, z}


def test_Poly__eq__():
    assert (Poly(x, x) == Poly(x, x)) is True
    assert (Poly(x, x, domain=QQ) == Poly(x, x)) is False
    assert (Poly(x, x) == Poly(x, x, domain=QQ)) is False

    assert (Poly(x, x, domain=ZZ[a]) == Poly(x, x)) is False
    assert (Poly(x, x) == Poly(x, x, domain=ZZ[a])) is False

    assert (Poly(x*y, x, y) == Poly(x, x)) is False

    assert (Poly(x, x, y) == Poly(x, x)) is False
    assert (Poly(x, x) == Poly(x, x, y)) is False

    assert (Poly(x**2 + 1, x) == Poly(y**2 + 1, y)) is False
    assert (Poly(y**2 + 1, y) == Poly(x**2 + 1, x)) is False

    f = Poly(x, x, domain=ZZ)
    g = Poly(x, x, domain=QQ)

    assert f.eq(g) is False
    assert f.ne(g) is True

    assert f.eq(g, strict=True) is False
    assert f.ne(g, strict=True) is True

    t0 = Symbol('t0')

    f =  Poly((t0/2 + x**2)*t**2 - x**2*t, t, domain='QQ[x,t0]')
    g =  Poly((t0/2 + x**2)*t**2 - x**2*t, t, domain='ZZ(x,t0)')

    assert (f == g) is False

def test_PurePoly__eq__():
    assert (PurePoly(x, x) == PurePoly(x, x)) is True
    assert (PurePoly(x, x, domain=QQ) == PurePoly(x, x)) is True
    assert (PurePoly(x, x) == PurePoly(x, x, domain=QQ)) is True

    assert (PurePoly(x, x, domain=ZZ[a]) == PurePoly(x, x)) is True
    assert (PurePoly(x, x) == PurePoly(x, x, domain=ZZ[a])) is True

    assert (PurePoly(x*y, x, y) == PurePoly(x, x)) is False

    assert (PurePoly(x, x, y) == PurePoly(x, x)) is False
    assert (PurePoly(x, x) == PurePoly(x, x, y)) is False

    assert (PurePoly(x**2 + 1, x) == PurePoly(y**2 + 1, y)) is True
    assert (PurePoly(y**2 + 1, y) == PurePoly(x**2 + 1, x)) is True

    f = PurePoly(x, x, domain=ZZ)
    g = PurePoly(x, x, domain=QQ)

    assert f.eq(g) is True
    assert f.ne(g) is False

    assert f.eq(g, strict=True) is False
    assert f.ne(g, strict=True) is True

    f = PurePoly(x, x, domain=ZZ)
    g = PurePoly(y, y, domain=QQ)

    assert f.eq(g) is True
    assert f.ne(g) is False

    assert f.eq(g, strict=True) is False
    assert f.ne(g, strict=True) is True


def test_PurePoly_Poly():
    assert isinstance(PurePoly(Poly(x**2 + 1)), PurePoly) is True
    assert isinstance(Poly(PurePoly(x**2 + 1)), Poly) is True


def test_Poly_get_domain():
    assert Poly(2*x).get_domain() == ZZ

    assert Poly(2*x, domain='ZZ').get_domain() == ZZ
    assert Poly(2*x, domain='QQ').get_domain() == QQ

    assert Poly(x/2).get_domain() == QQ

    raises(CoercionFailed, lambda: Poly(x/2, domain='ZZ'))
    assert Poly(x/2, domain='QQ').get_domain() == QQ

    assert isinstance(Poly(0.2*x).get_domain(), RealField)


def test_Poly_set_domain():
    assert Poly(2*x + 1).set_domain(ZZ) == Poly(2*x + 1)
    assert Poly(2*x + 1).set_domain('ZZ') == Poly(2*x + 1)

    assert Poly(2*x + 1).set_domain(QQ) == Poly(2*x + 1, domain='QQ')
    assert Poly(2*x + 1).set_domain('QQ') == Poly(2*x + 1, domain='QQ')

    assert Poly(Rational(2, 10)*x + Rational(1, 10)).set_domain('RR') == Poly(0.2*x + 0.1)
    assert Poly(0.2*x + 0.1).set_domain('QQ') == Poly(Rational(2, 10)*x + Rational(1, 10))

    raises(CoercionFailed, lambda: Poly(x/2 + 1).set_domain(ZZ))
    raises(CoercionFailed, lambda: Poly(x + 1, modulus=2).set_domain(QQ))

    raises(GeneratorsError, lambda: Poly(x*y, x, y).set_domain(ZZ[y]))


def test_Poly_get_modulus():
    assert Poly(x**2 + 1, modulus=2).get_modulus() == 2
    raises(PolynomialError, lambda: Poly(x**2 + 1).get_modulus())


def test_Poly_set_modulus():
    assert Poly(
        x**2 + 1, modulus=2).set_modulus(7) == Poly(x**2 + 1, modulus=7)
    assert Poly(
        x**2 + 5, modulus=7).set_modulus(2) == Poly(x**2 + 1, modulus=2)

    assert Poly(x**2 + 1).set_modulus(2) == Poly(x**2 + 1, modulus=2)

    raises(CoercionFailed, lambda: Poly(x/2 + 1).set_modulus(2))


def test_Poly_add_ground():
    assert Poly(x + 1).add_ground(2) == Poly(x + 3)


def test_Poly_sub_ground():
    assert Poly(x + 1).sub_ground(2) == Poly(x - 1)


def test_Poly_mul_ground():
    assert Poly(x + 1).mul_ground(2) == Poly(2*x + 2)


def test_Poly_quo_ground():
    assert Poly(2*x + 4).quo_ground(2) == Poly(x + 2)
    assert Poly(2*x + 3).quo_ground(2) == Poly(x + 1)


def test_Poly_exquo_ground():
    assert Poly(2*x + 4).exquo_ground(2) == Poly(x + 2)
    raises(ExactQuotientFailed, lambda: Poly(2*x + 3).exquo_ground(2))


def test_Poly_abs():
    assert Poly(-x + 1, x).abs() == abs(Poly(-x + 1, x)) == Poly(x + 1, x)


def test_Poly_neg():
    assert Poly(-x + 1, x).neg() == -Poly(-x + 1, x) == Poly(x - 1, x)


def test_Poly_add():
    assert Poly(0, x).add(Poly(0, x)) == Poly(0, x)
    assert Poly(0, x) + Poly(0, x) == Poly(0, x)

    assert Poly(1, x).add(Poly(0, x)) == Poly(1, x)
    assert Poly(1, x, y) + Poly(0, x) == Poly(1, x, y)
    assert Poly(0, x).add(Poly(1, x, y)) == Poly(1, x, y)
    assert Poly(0, x, y) + Poly(1, x, y) == Poly(1, x, y)

    assert Poly(1, x) + x == Poly(x + 1, x)
    with warns_deprecated_sympy():
        Poly(1, x) + sin(x)

    assert Poly(x, x) + 1 == Poly(x + 1, x)
    assert 1 + Poly(x, x) == Poly(x + 1, x)


def test_Poly_sub():
    assert Poly(0, x).sub(Poly(0, x)) == Poly(0, x)
    assert Poly(0, x) - Poly(0, x) == Poly(0, x)

    assert Poly(1, x).sub(Poly(0, x)) == Poly(1, x)
    assert Poly(1, x, y) - Poly(0, x) == Poly(1, x, y)
    assert Poly(0, x).sub(Poly(1, x, y)) == Poly(-1, x, y)
    assert Poly(0, x, y) - Poly(1, x, y) == Poly(-1, x, y)

    assert Poly(1, x) - x == Poly(1 - x, x)
    with warns_deprecated_sympy():
        Poly(1, x) - sin(x)

    assert Poly(x, x) - 1 == Poly(x - 1, x)
    assert 1 - Poly(x, x) == Poly(1 - x, x)


def test_Poly_mul():
    assert Poly(0, x).mul(Poly(0, x)) == Poly(0, x)
    assert Poly(0, x) * Poly(0, x) == Poly(0, x)

    assert Poly(2, x).mul(Poly(4, x)) == Poly(8, x)
    assert Poly(2, x, y) * Poly(4, x) == Poly(8, x, y)
    assert Poly(4, x).mul(Poly(2, x, y)) == Poly(8, x, y)
    assert Poly(4, x, y) * Poly(2, x, y) == Poly(8, x, y)

    assert Poly(1, x) * x == Poly(x, x)
    with warns_deprecated_sympy():
        Poly(1, x) * sin(x)

    assert Poly(x, x) * 2 == Poly(2*x, x)
    assert 2 * Poly(x, x) == Poly(2*x, x)

def test_issue_13079():
    assert Poly(x)*x == Poly(x**2, x, domain='ZZ')
    assert x*Poly(x) == Poly(x**2, x, domain='ZZ')
    assert -2*Poly(x) == Poly(-2*x, x, domain='ZZ')
    assert S(-2)*Poly(x) == Poly(-2*x, x, domain='ZZ')
    assert Poly(x)*S(-2) == Poly(-2*x, x, domain='ZZ')

def test_Poly_sqr():
    assert Poly(x*y, x, y).sqr() == Poly(x**2*y**2, x, y)


def test_Poly_pow():
    assert Poly(x, x).pow(10) == Poly(x**10, x)
    assert Poly(x, x).pow(Integer(10)) == Poly(x**10, x)

    assert Poly(2*y, x, y).pow(4) == Poly(16*y**4, x, y)
    assert Poly(2*y, x, y).pow(Integer(4)) == Poly(16*y**4, x, y)

    assert Poly(7*x*y, x, y)**3 == Poly(343*x**3*y**3, x, y)

    raises(TypeError, lambda: Poly(x*y + 1, x, y)**(-1))
    raises(TypeError, lambda: Poly(x*y + 1, x, y)**x)


def test_Poly_divmod():
    f, g = Poly(x**2), Poly(x)
    q, r = g, Poly(0, x)

    assert divmod(f, g) == (q, r)
    assert f // g == q
    assert f % g == r

    assert divmod(f, x) == (q, r)
    assert f // x == q
    assert f % x == r

    q, r = Poly(0, x), Poly(2, x)

    assert divmod(2, g) == (q, r)
    assert 2 // g == q
    assert 2 % g == r

    assert Poly(x)/Poly(x) == 1
    assert Poly(x**2)/Poly(x) == x
    assert Poly(x)/Poly(x**2) == 1/x


def test_Poly_eq_ne():
    assert (Poly(x + y, x, y) == Poly(x + y, x, y)) is True
    assert (Poly(x + y, x) == Poly(x + y, x, y)) is False
    assert (Poly(x + y, x, y) == Poly(x + y, x)) is False
    assert (Poly(x + y, x) == Poly(x + y, x)) is True
    assert (Poly(x + y, y) == Poly(x + y, y)) is True

    assert (Poly(x + y, x, y) == x + y) is True
    assert (Poly(x + y, x) == x + y) is True
    assert (Poly(x + y, x, y) == x + y) is True
    assert (Poly(x + y, x) == x + y) is True
    assert (Poly(x + y, y) == x + y) is True

    assert (Poly(x + y, x, y) != Poly(x + y, x, y)) is False
    assert (Poly(x + y, x) != Poly(x + y, x, y)) is True
    assert (Poly(x + y, x, y) != Poly(x + y, x)) is True
    assert (Poly(x + y, x) != Poly(x + y, x)) is False
    assert (Poly(x + y, y) != Poly(x + y, y)) is False

    assert (Poly(x + y, x, y) != x + y) is False
    assert (Poly(x + y, x) != x + y) is False
    assert (Poly(x + y, x, y) != x + y) is False
    assert (Poly(x + y, x) != x + y) is False
    assert (Poly(x + y, y) != x + y) is False

    assert (Poly(x, x) == sin(x)) is False
    assert (Poly(x, x) != sin(x)) is True


def test_Poly_nonzero():
    assert not bool(Poly(0, x)) is True
    assert not bool(Poly(1, x)) is False


def test_Poly_properties():
    assert Poly(0, x).is_zero is True
    assert Poly(1, x).is_zero is False

    assert Poly(1, x).is_one is True
    assert Poly(2, x).is_one is False

    assert Poly(x - 1, x).is_sqf is True
    assert Poly((x - 1)**2, x).is_sqf is False

    assert Poly(x - 1, x).is_monic is True
    assert Poly(2*x - 1, x).is_monic is False

    assert Poly(3*x + 2, x).is_primitive is True
    assert Poly(4*x + 2, x).is_primitive is False

    assert Poly(1, x).is_ground is True
    assert Poly(x, x).is_ground is False

    assert Poly(x + y + z + 1).is_linear is True
    assert Poly(x*y*z + 1).is_linear is False

    assert Poly(x*y + z + 1).is_quadratic is True
    assert Poly(x*y*z + 1).is_quadratic is False

    assert Poly(x*y).is_monomial is True
    assert Poly(x*y + 1).is_monomial is False

    assert Poly(x**2 + x*y).is_homogeneous is True
    assert Poly(x**3 + x*y).is_homogeneous is False

    assert Poly(x).is_univariate is True
    assert Poly(x*y).is_univariate is False

    assert Poly(x*y).is_multivariate is True
    assert Poly(x).is_multivariate is False

    assert Poly(
        x**16 + x**14 - x**10 + x**8 - x**6 + x**2 + 1).is_cyclotomic is False
    assert Poly(
        x**16 + x**14 - x**10 - x**8 - x**6 + x**2 + 1).is_cyclotomic is True


def test_Poly_is_irreducible():
    assert Poly(x**2 + x + 1).is_irreducible is True
    assert Poly(x**2 + 2*x + 1).is_irreducible is False

    assert Poly(7*x + 3, modulus=11).is_irreducible is True
    assert Poly(7*x**2 + 3*x + 1, modulus=11).is_irreducible is False


def test_Poly_subs():
    assert Poly(x + 1).subs(x, 0) == 1

    assert Poly(x + 1).subs(x, x) == Poly(x + 1)
    assert Poly(x + 1).subs(x, y) == Poly(y + 1)

    assert Poly(x*y, x).subs(y, x) == x**2
    assert Poly(x*y, x).subs(x, y) == y**2


def test_Poly_replace():
    assert Poly(x + 1).replace(x) == Poly(x + 1)
    assert Poly(x + 1).replace(y) == Poly(y + 1)

    raises(PolynomialError, lambda: Poly(x + y).replace(z))

    assert Poly(x + 1).replace(x, x) == Poly(x + 1)
    assert Poly(x + 1).replace(x, y) == Poly(y + 1)

    assert Poly(x + y).replace(x, x) == Poly(x + y)
    assert Poly(x + y).replace(x, z) == Poly(z + y, z, y)

    assert Poly(x + y).replace(y, y) == Poly(x + y)
    assert Poly(x + y).replace(y, z) == Poly(x + z, x, z)
    assert Poly(x + y).replace(z, t) == Poly(x + y)

    raises(PolynomialError, lambda: Poly(x + y).replace(x, y))

    assert Poly(x + y, x).replace(x, z) == Poly(z + y, z)
    assert Poly(x + y, y).replace(y, z) == Poly(x + z, z)

    raises(PolynomialError, lambda: Poly(x + y, x).replace(x, y))
    raises(PolynomialError, lambda: Poly(x + y, y).replace(y, x))


def test_Poly_reorder():
    raises(PolynomialError, lambda: Poly(x + y).reorder(x, z))

    assert Poly(x + y, x, y).reorder(x, y) == Poly(x + y, x, y)
    assert Poly(x + y, x, y).reorder(y, x) == Poly(x + y, y, x)

    assert Poly(x + y, y, x).reorder(x, y) == Poly(x + y, x, y)
    assert Poly(x + y, y, x).reorder(y, x) == Poly(x + y, y, x)

    assert Poly(x + y, x, y).reorder(wrt=x) == Poly(x + y, x, y)
    assert Poly(x + y, x, y).reorder(wrt=y) == Poly(x + y, y, x)


def test_Poly_ltrim():
    f = Poly(y**2 + y*z**2, x, y, z).ltrim(y)
    assert f.as_expr() == y**2 + y*z**2 and f.gens == (y, z)
    assert Poly(x*y - x, z, x, y).ltrim(1) == Poly(x*y - x, x, y)

    raises(PolynomialError, lambda: Poly(x*y**2 + y**2, x, y).ltrim(y))
    raises(PolynomialError, lambda: Poly(x*y - x, x, y).ltrim(-1))

def test_Poly_has_only_gens():
    assert Poly(x*y + 1, x, y, z).has_only_gens(x, y) is True
    assert Poly(x*y + z, x, y, z).has_only_gens(x, y) is False

    raises(GeneratorsError, lambda: Poly(x*y**2 + y**2, x, y).has_only_gens(t))


def test_Poly_to_ring():
    assert Poly(2*x + 1, domain='ZZ').to_ring() == Poly(2*x + 1, domain='ZZ')
    assert Poly(2*x + 1, domain='QQ').to_ring() == Poly(2*x + 1, domain='ZZ')

    raises(CoercionFailed, lambda: Poly(x/2 + 1).to_ring())
    raises(DomainError, lambda: Poly(2*x + 1, modulus=3).to_ring())


def test_Poly_to_field():
    assert Poly(2*x + 1, domain='ZZ').to_field() == Poly(2*x + 1, domain='QQ')
    assert Poly(2*x + 1, domain='QQ').to_field() == Poly(2*x + 1, domain='QQ')

    assert Poly(x/2 + 1, domain='QQ').to_field() == Poly(x/2 + 1, domain='QQ')
    assert Poly(2*x + 1, modulus=3).to_field() == Poly(2*x + 1, modulus=3)

    assert Poly(2.0*x + 1.0).to_field() == Poly(2.0*x + 1.0)


def test_Poly_to_exact():
    assert Poly(2*x).to_exact() == Poly(2*x)
    assert Poly(x/2).to_exact() == Poly(x/2)

    assert Poly(0.1*x).to_exact() == Poly(x/10)


def test_Poly_retract():
    f = Poly(x**2 + 1, x, domain=QQ[y])

    assert f.retract() == Poly(x**2 + 1, x, domain='ZZ')
    assert f.retract(field=True) == Poly(x**2 + 1, x, domain='QQ')

    assert Poly(0, x, y).retract() == Poly(0, x, y)


def test_Poly_slice():
    f = Poly(x**3 + 2*x**2 + 3*x + 4)

    assert f.slice(0, 0) == Poly(0, x)
    assert f.slice(0, 1) == Poly(4, x)
    assert f.slice(0, 2) == Poly(3*x + 4, x)
    assert f.slice(0, 3) == Poly(2*x**2 + 3*x + 4, x)
    assert f.slice(0, 4) == Poly(x**3 + 2*x**2 + 3*x + 4, x)

    assert f.slice(x, 0, 0) == Poly(0, x)
    assert f.slice(x, 0, 1) == Poly(4, x)
    assert f.slice(x, 0, 2) == Poly(3*x + 4, x)
    assert f.slice(x, 0, 3) == Poly(2*x**2 + 3*x + 4, x)
    assert f.slice(x, 0, 4) == Poly(x**3 + 2*x**2 + 3*x + 4, x)


def test_Poly_coeffs():
    assert Poly(0, x).coeffs() == [0]
    assert Poly(1, x).coeffs() == [1]

    assert Poly(2*x + 1, x).coeffs() == [2, 1]

    assert Poly(7*x**2 + 2*x + 1, x).coeffs() == [7, 2, 1]
    assert Poly(7*x**4 + 2*x + 1, x).coeffs() == [7, 2, 1]

    assert Poly(x*y**7 + 2*x**2*y**3).coeffs('lex') == [2, 1]
    assert Poly(x*y**7 + 2*x**2*y**3).coeffs('grlex') == [1, 2]


def test_Poly_monoms():
    assert Poly(0, x).monoms() == [(0,)]
    assert Poly(1, x).monoms() == [(0,)]

    assert Poly(2*x + 1, x).monoms() == [(1,), (0,)]

    assert Poly(7*x**2 + 2*x + 1, x).monoms() == [(2,), (1,), (0,)]
    assert Poly(7*x**4 + 2*x + 1, x).monoms() == [(4,), (1,), (0,)]

    assert Poly(x*y**7 + 2*x**2*y**3).monoms('lex') == [(2, 3), (1, 7)]
    assert Poly(x*y**7 + 2*x**2*y**3).monoms('grlex') == [(1, 7), (2, 3)]


def test_Poly_terms():
    assert Poly(0, x).terms() == [((0,), 0)]
    assert Poly(1, x).terms() == [((0,), 1)]

    assert Poly(2*x + 1, x).terms() == [((1,), 2), ((0,), 1)]

    assert Poly(7*x**2 + 2*x + 1, x).terms() == [((2,), 7), ((1,), 2), ((0,), 1)]
    assert Poly(7*x**4 + 2*x + 1, x).terms() == [((4,), 7), ((1,), 2), ((0,), 1)]

    assert Poly(
        x*y**7 + 2*x**2*y**3).terms('lex') == [((2, 3), 2), ((1, 7), 1)]
    assert Poly(
        x*y**7 + 2*x**2*y**3).terms('grlex') == [((1, 7), 1), ((2, 3), 2)]


def test_Poly_all_coeffs():
    assert Poly(0, x).all_coeffs() == [0]
    assert Poly(1, x).all_coeffs() == [1]

    assert Poly(2*x + 1, x).all_coeffs() == [2, 1]

    assert Poly(7*x**2 + 2*x + 1, x).all_coeffs() == [7, 2, 1]
    assert Poly(7*x**4 + 2*x + 1, x).all_coeffs() == [7, 0, 0, 2, 1]


def test_Poly_all_monoms():
    assert Poly(0, x).all_monoms() == [(0,)]
    assert Poly(1, x).all_monoms() == [(0,)]

    assert Poly(2*x + 1, x).all_monoms() == [(1,), (0,)]

    assert Poly(7*x**2 + 2*x + 1, x).all_monoms() == [(2,), (1,), (0,)]
    assert Poly(7*x**4 + 2*x + 1, x).all_monoms() == [(4,), (3,), (2,), (1,), (0,)]


def test_Poly_all_terms():
    assert Poly(0, x).all_terms() == [((0,), 0)]
    assert Poly(1, x).all_terms() == [((0,), 1)]

    assert Poly(2*x + 1, x).all_terms() == [((1,), 2), ((0,), 1)]

    assert Poly(7*x**2 + 2*x + 1, x).all_terms() == \
        [((2,), 7), ((1,), 2), ((0,), 1)]
    assert Poly(7*x**4 + 2*x + 1, x).all_terms() == \
        [((4,), 7), ((3,), 0), ((2,), 0), ((1,), 2), ((0,), 1)]


def test_Poly_termwise():
    f = Poly(x**2 + 20*x + 400)
    g = Poly(x**2 + 2*x + 4)

    def func(monom, coeff):
        (k,) = monom
        return coeff//10**(2 - k)

    assert f.termwise(func) == g

    def func(monom, coeff):
        (k,) = monom
        return (k,), coeff//10**(2 - k)

    assert f.termwise(func) == g


def test_Poly_length():
    assert Poly(0, x).length() == 0
    assert Poly(1, x).length() == 1
    assert Poly(x, x).length() == 1

    assert Poly(x + 1, x).length() == 2
    assert Poly(x**2 + 1, x).length() == 2
    assert Poly(x**2 + x + 1, x).length() == 3


def test_Poly_as_dict():
    assert Poly(0, x).as_dict() == {}
    assert Poly(0, x, y, z).as_dict() == {}

    assert Poly(1, x).as_dict() == {(0,): 1}
    assert Poly(1, x, y, z).as_dict() == {(0, 0, 0): 1}

    assert Poly(x**2 + 3, x).as_dict() == {(2,): 1, (0,): 3}
    assert Poly(x**2 + 3, x, y, z).as_dict() == {(2, 0, 0): 1, (0, 0, 0): 3}

    assert Poly(3*x**2*y*z**3 + 4*x*y + 5*x*z).as_dict() == {(2, 1, 3): 3,
                (1, 1, 0): 4, (1, 0, 1): 5}


def test_Poly_as_expr():
    assert Poly(0, x).as_expr() == 0
    assert Poly(0, x, y, z).as_expr() == 0

    assert Poly(1, x).as_expr() == 1
    assert Poly(1, x, y, z).as_expr() == 1

    assert Poly(x**2 + 3, x).as_expr() == x**2 + 3
    assert Poly(x**2 + 3, x, y, z).as_expr() == x**2 + 3

    assert Poly(
        3*x**2*y*z**3 + 4*x*y + 5*x*z).as_expr() == 3*x**2*y*z**3 + 4*x*y + 5*x*z

    f = Poly(x**2 + 2*x*y**2 - y, x, y)

    assert f.as_expr() == -y + x**2 + 2*x*y**2

    assert f.as_expr({x: 5}) == 25 - y + 10*y**2
    assert f.as_expr({y: 6}) == -6 + 72*x + x**2

    assert f.as_expr({x: 5, y: 6}) == 379
    assert f.as_expr(5, 6) == 379

    raises(GeneratorsError, lambda: f.as_expr({z: 7}))


def test_Poly_lift():
    assert Poly(x**4 - I*x + 17*I, x, gaussian=True).lift() == \
        Poly(x**16 + 2*x**10 + 578*x**8 + x**4 - 578*x**2 + 83521,
             x, domain='QQ')


def test_Poly_deflate():
    assert Poly(0, x).deflate() == ((1,), Poly(0, x))
    assert Poly(1, x).deflate() == ((1,), Poly(1, x))
    assert Poly(x, x).deflate() == ((1,), Poly(x, x))

    assert Poly(x**2, x).deflate() == ((2,), Poly(x, x))
    assert Poly(x**17, x).deflate() == ((17,), Poly(x, x))

    assert Poly(
        x**2*y*z**11 + x**4*z**11).deflate() == ((2, 1, 11), Poly(x*y*z + x**2*z))


def test_Poly_inject():
    f = Poly(x**2*y + x*y**3 + x*y + 1, x)

    assert f.inject() == Poly(x**2*y + x*y**3 + x*y + 1, x, y)
    assert f.inject(front=True) == Poly(y**3*x + y*x**2 + y*x + 1, y, x)


def test_Poly_eject():
    f = Poly(x**2*y + x*y**3 + x*y + 1, x, y)

    assert f.eject(x) == Poly(x*y**3 + (x**2 + x)*y + 1, y, domain='ZZ[x]')
    assert f.eject(y) == Poly(y*x**2 + (y**3 + y)*x + 1, x, domain='ZZ[y]')

    ex = x + y + z + t + w
    g = Poly(ex, x, y, z, t, w)

    assert g.eject(x) == Poly(ex, y, z, t, w, domain='ZZ[x]')
    assert g.eject(x, y) == Poly(ex, z, t, w, domain='ZZ[x, y]')
    assert g.eject(x, y, z) == Poly(ex, t, w, domain='ZZ[x, y, z]')
    assert g.eject(w) == Poly(ex, x, y, z, t, domain='ZZ[w]')
    assert g.eject(t, w) == Poly(ex, x, y, z, domain='ZZ[t, w]')
    assert g.eject(z, t, w) == Poly(ex, x, y, domain='ZZ[z, t, w]')

    raises(DomainError, lambda: Poly(x*y, x, y, domain=ZZ[z]).eject(y))
    raises(NotImplementedError, lambda: Poly(x*y, x, y, z).eject(y))


def test_Poly_exclude():
    assert Poly(x, x, y).exclude() == Poly(x, x)
    assert Poly(x*y, x, y).exclude() == Poly(x*y, x, y)
    assert Poly(1, x, y).exclude() == Poly(1, x, y)


def test_Poly__gen_to_level():
    assert Poly(1, x, y)._gen_to_level(-2) == 0
    assert Poly(1, x, y)._gen_to_level(-1) == 1
    assert Poly(1, x, y)._gen_to_level( 0) == 0
    assert Poly(1, x, y)._gen_to_level( 1) == 1

    raises(PolynomialError, lambda: Poly(1, x, y)._gen_to_level(-3))
    raises(PolynomialError, lambda: Poly(1, x, y)._gen_to_level( 2))

    assert Poly(1, x, y)._gen_to_level(x) == 0
    assert Poly(1, x, y)._gen_to_level(y) == 1

    assert Poly(1, x, y)._gen_to_level('x') == 0
    assert Poly(1, x, y)._gen_to_level('y') == 1

    raises(PolynomialError, lambda: Poly(1, x, y)._gen_to_level(z))
    raises(PolynomialError, lambda: Poly(1, x, y)._gen_to_level('z'))


def test_Poly_degree():
    assert Poly(0, x).degree() is -oo
    assert Poly(1, x).degree() == 0
    assert Poly(x, x).degree() == 1

    assert Poly(0, x).degree(gen=0) is -oo
    assert Poly(1, x).degree(gen=0) == 0
    assert Poly(x, x).degree(gen=0) == 1

    assert Poly(0, x).degree(gen=x) is -oo
    assert Poly(1, x).degree(gen=x) == 0
    assert Poly(x, x).degree(gen=x) == 1

    assert Poly(0, x).degree(gen='x') is -oo
    assert Poly(1, x).degree(gen='x') == 0
    assert Poly(x, x).degree(gen='x') == 1

    raises(PolynomialError, lambda: Poly(1, x).degree(gen=1))
    raises(PolynomialError, lambda: Poly(1, x).degree(gen=y))
    raises(PolynomialError, lambda: Poly(1, x).degree(gen='y'))

    assert Poly(1, x, y).degree() == 0
    assert Poly(2*y, x, y).degree() == 0
    assert Poly(x*y, x, y).degree() == 1

    assert Poly(1, x, y).degree(gen=x) == 0
    assert Poly(2*y, x, y).degree(gen=x) == 0
    assert Poly(x*y, x, y).degree(gen=x) == 1

    assert Poly(1, x, y).degree(gen=y) == 0
    assert Poly(2*y, x, y).degree(gen=y) == 1
    assert Poly(x*y, x, y).degree(gen=y) == 1

    assert degree(0, x) is -oo
    assert degree(1, x) == 0
    assert degree(x, x) == 1

    assert degree(x*y**2, x) == 1
    assert degree(x*y**2, y) == 2
    assert degree(x*y**2, z) == 0

    assert degree(pi) == 1

    raises(TypeError, lambda: degree(y**2 + x**3))
    raises(TypeError, lambda: degree(y**2 + x**3, 1))
    raises(PolynomialError, lambda: degree(x, 1.1))
    raises(PolynomialError, lambda: degree(x**2/(x**3 + 1), x))

    assert degree(Poly(0,x),z) is -oo
    assert degree(Poly(1,x),z) == 0
    assert degree(Poly(x**2+y**3,y)) == 3
    assert degree(Poly(y**2 + x**3, y, x), 1) == 3
    assert degree(Poly(y**2 + x**3, x), z) == 0
    assert degree(Poly(y**2 + x**3 + z**4, x), z) == 4

def test_Poly_degree_list():
    assert Poly(0, x).degree_list() == (-oo,)
    assert Poly(0, x, y).degree_list() == (-oo, -oo)
    assert Poly(0, x, y, z).degree_list() == (-oo, -oo, -oo)

    assert Poly(1, x).degree_list() == (0,)
    assert Poly(1, x, y).degree_list() == (0, 0)
    assert Poly(1, x, y, z).degree_list() == (0, 0, 0)

    assert Poly(x**2*y + x**3*z**2 + 1).degree_list() == (3, 1, 2)

    assert degree_list(1, x) == (0,)
    assert degree_list(x, x) == (1,)

    assert degree_list(x*y**2) == (1, 2)

    raises(ComputationFailed, lambda: degree_list(1))


def test_Poly_total_degree():
    assert Poly(x**2*y + x**3*z**2 + 1).total_degree() == 5
    assert Poly(x**2 + z**3).total_degree() == 3
    assert Poly(x*y*z + z**4).total_degree() == 4
    assert Poly(x**3 + x + 1).total_degree() == 3

    assert total_degree(x*y + z**3) == 3
    assert total_degree(x*y + z**3, x, y) == 2
    assert total_degree(1) == 0
    assert total_degree(Poly(y**2 + x**3 + z**4)) == 4
    assert total_degree(Poly(y**2 + x**3 + z**4, x)) == 3
    assert total_degree(Poly(y**2 + x**3 + z**4, x), z) == 4
    assert total_degree(Poly(x**9 + x*z*y + x**3*z**2 + z**7,x), z) == 7

def test_Poly_homogenize():
    assert Poly(x**2+y).homogenize(z) == Poly(x**2+y*z)
    assert Poly(x+y).homogenize(z) == Poly(x+y, x, y, z)
    assert Poly(x+y**2).homogenize(y) == Poly(x*y+y**2)


def test_Poly_homogeneous_order():
    assert Poly(0, x, y).homogeneous_order() is -oo
    assert Poly(1, x, y).homogeneous_order() == 0
    assert Poly(x, x, y).homogeneous_order() == 1
    assert Poly(x*y, x, y).homogeneous_order() == 2

    assert Poly(x + 1, x, y).homogeneous_order() is None
    assert Poly(x*y + x, x, y).homogeneous_order() is None

    assert Poly(x**5 + 2*x**3*y**2 + 9*x*y**4).homogeneous_order() == 5
    assert Poly(x**5 + 2*x**3*y**3 + 9*x*y**4).homogeneous_order() is None


def test_Poly_LC():
    assert Poly(0, x).LC() == 0
    assert Poly(1, x).LC() == 1
    assert Poly(2*x**2 + x, x).LC() == 2

    assert Poly(x*y**7 + 2*x**2*y**3).LC('lex') == 2
    assert Poly(x*y**7 + 2*x**2*y**3).LC('grlex') == 1

    assert LC(x*y**7 + 2*x**2*y**3, order='lex') == 2
    assert LC(x*y**7 + 2*x**2*y**3, order='grlex') == 1


def test_Poly_TC():
    assert Poly(0, x).TC() == 0
    assert Poly(1, x).TC() == 1
    assert Poly(2*x**2 + x, x).TC() == 0


def test_Poly_EC():
    assert Poly(0, x).EC() == 0
    assert Poly(1, x).EC() == 1
    assert Poly(2*x**2 + x, x).EC() == 1

    assert Poly(x*y**7 + 2*x**2*y**3).EC('lex') == 1
    assert Poly(x*y**7 + 2*x**2*y**3).EC('grlex') == 2


def test_Poly_coeff():
    assert Poly(0, x).coeff_monomial(1) == 0
    assert Poly(0, x).coeff_monomial(x) == 0

    assert Poly(1, x).coeff_monomial(1) == 1
    assert Poly(1, x).coeff_monomial(x) == 0

    assert Poly(x**8, x).coeff_monomial(1) == 0
    assert Poly(x**8, x).coeff_monomial(x**7) == 0
    assert Poly(x**8, x).coeff_monomial(x**8) == 1
    assert Poly(x**8, x).coeff_monomial(x**9) == 0

    assert Poly(3*x*y**2 + 1, x, y).coeff_monomial(1) == 1
    assert Poly(3*x*y**2 + 1, x, y).coeff_monomial(x*y**2) == 3

    p = Poly(24*x*y*exp(8) + 23*x, x, y)

    assert p.coeff_monomial(x) == 23
    assert p.coeff_monomial(y) == 0
    assert p.coeff_monomial(x*y) == 24*exp(8)

    assert p.as_expr().coeff(x) == 24*y*exp(8) + 23
    raises(NotImplementedError, lambda: p.coeff(x))

    raises(ValueError, lambda: Poly(x + 1).coeff_monomial(0))
    raises(ValueError, lambda: Poly(x + 1).coeff_monomial(3*x))
    raises(ValueError, lambda: Poly(x + 1).coeff_monomial(3*x*y))


def test_Poly_nth():
    assert Poly(0, x).nth(0) == 0
    assert Poly(0, x).nth(1) == 0

    assert Poly(1, x).nth(0) == 1
    assert Poly(1, x).nth(1) == 0

    assert Poly(x**8, x).nth(0) == 0
    assert Poly(x**8, x).nth(7) == 0
    assert Poly(x**8, x).nth(8) == 1
    assert Poly(x**8, x).nth(9) == 0

    assert Poly(3*x*y**2 + 1, x, y).nth(0, 0) == 1
    assert Poly(3*x*y**2 + 1, x, y).nth(1, 2) == 3

    raises(ValueError, lambda: Poly(x*y + 1, x, y).nth(1))


def test_Poly_LM():
    assert Poly(0, x).LM() == (0,)
    assert Poly(1, x).LM() == (0,)
    assert Poly(2*x**2 + x, x).LM() == (2,)

    assert Poly(x*y**7 + 2*x**2*y**3).LM('lex') == (2, 3)
    assert Poly(x*y**7 + 2*x**2*y**3).LM('grlex') == (1, 7)

    assert LM(x*y**7 + 2*x**2*y**3, order='lex') == x**2*y**3
    assert LM(x*y**7 + 2*x**2*y**3, order='grlex') == x*y**7


def test_Poly_LM_custom_order():
    f = Poly(x**2*y**3*z + x**2*y*z**3 + x*y*z + 1)
    rev_lex = lambda monom: tuple(reversed(monom))

    assert f.LM(order='lex') == (2, 3, 1)
    assert f.LM(order=rev_lex) == (2, 1, 3)


def test_Poly_EM():
    assert Poly(0, x).EM() == (0,)
    assert Poly(1, x).EM() == (0,)
    assert Poly(2*x**2 + x, x).EM() == (1,)

    assert Poly(x*y**7 + 2*x**2*y**3).EM('lex') == (1, 7)
    assert Poly(x*y**7 + 2*x**2*y**3).EM('grlex') == (2, 3)


def test_Poly_LT():
    assert Poly(0, x).LT() == ((0,), 0)
    assert Poly(1, x).LT() == ((0,), 1)
    assert Poly(2*x**2 + x, x).LT() == ((2,), 2)

    assert Poly(x*y**7 + 2*x**2*y**3).LT('lex') == ((2, 3), 2)
    assert Poly(x*y**7 + 2*x**2*y**3).LT('grlex') == ((1, 7), 1)

    assert LT(x*y**7 + 2*x**2*y**3, order='lex') == 2*x**2*y**3
    assert LT(x*y**7 + 2*x**2*y**3, order='grlex') == x*y**7


def test_Poly_ET():
    assert Poly(0, x).ET() == ((0,), 0)
    assert Poly(1, x).ET() == ((0,), 1)
    assert Poly(2*x**2 + x, x).ET() == ((1,), 1)

    assert Poly(x*y**7 + 2*x**2*y**3).ET('lex') == ((1, 7), 1)
    assert Poly(x*y**7 + 2*x**2*y**3).ET('grlex') == ((2, 3), 2)


def test_Poly_max_norm():
    assert Poly(-1, x).max_norm() == 1
    assert Poly( 0, x).max_norm() == 0
    assert Poly( 1, x).max_norm() == 1


def test_Poly_l1_norm():
    assert Poly(-1, x).l1_norm() == 1
    assert Poly( 0, x).l1_norm() == 0
    assert Poly( 1, x).l1_norm() == 1


def test_Poly_clear_denoms():
    coeff, poly = Poly(x + 2, x).clear_denoms()
    assert coeff == 1 and poly == Poly(
        x + 2, x, domain='ZZ') and poly.get_domain() == ZZ

    coeff, poly = Poly(x/2 + 1, x).clear_denoms()
    assert coeff == 2 and poly == Poly(
        x + 2, x, domain='QQ') and poly.get_domain() == QQ

    coeff, poly = Poly(x/2 + 1, x).clear_denoms(convert=True)
    assert coeff == 2 and poly == Poly(
        x + 2, x, domain='ZZ') and poly.get_domain() == ZZ

    coeff, poly = Poly(x/y + 1, x).clear_denoms(convert=True)
    assert coeff == y and poly == Poly(
        x + y, x, domain='ZZ[y]') and poly.get_domain() == ZZ[y]

    coeff, poly = Poly(x/3 + sqrt(2), x, domain='EX').clear_denoms()
    assert coeff == 3 and poly == Poly(
        x + 3*sqrt(2), x, domain='EX') and poly.get_domain() == EX

    coeff, poly = Poly(
        x/3 + sqrt(2), x, domain='EX').clear_denoms(convert=True)
    assert coeff == 3 and poly == Poly(
        x + 3*sqrt(2), x, domain='EX') and poly.get_domain() == EX


def test_Poly_rat_clear_denoms():
    f = Poly(x**2/y + 1, x)
    g = Poly(x**3 + y, x)

    assert f.rat_clear_denoms(g) == \
        (Poly(x**2 + y, x), Poly(y*x**3 + y**2, x))

    f = f.set_domain(EX)
    g = g.set_domain(EX)

    assert f.rat_clear_denoms(g) == (f, g)


def test_issue_20427():
    f = Poly(-117968192370600*18**(S(1)/3)/(217603955769048*(24201 +
        253*sqrt(9165))**(S(1)/3) + 2273005839412*sqrt(9165)*(24201 +
        253*sqrt(9165))**(S(1)/3)) - 15720318185*2**(S(2)/3)*3**(S(1)/3)*(24201
        + 253*sqrt(9165))**(S(2)/3)/(217603955769048*(24201 + 253*sqrt(9165))**
        (S(1)/3) + 2273005839412*sqrt(9165)*(24201 + 253*sqrt(9165))**(S(1)/3))
        + 15720318185*12**(S(1)/3)*(24201 + 253*sqrt(9165))**(S(2)/3)/(
        217603955769048*(24201 + 253*sqrt(9165))**(S(1)/3) + 2273005839412*
        sqrt(9165)*(24201 + 253*sqrt(9165))**(S(1)/3)) + 117968192370600*2**(
        S(1)/3)*3**(S(2)/3)/(217603955769048*(24201 + 253*sqrt(9165))**(S(1)/3)
        + 2273005839412*sqrt(9165)*(24201 + 253*sqrt(9165))**(S(1)/3)), x)
    assert f == Poly(0, x, domain='EX')


def test_Poly_integrate():
    assert Poly(x + 1).integrate() == Poly(x**2/2 + x)
    assert Poly(x + 1).integrate(x) == Poly(x**2/2 + x)
    assert Poly(x + 1).integrate((x, 1)) == Poly(x**2/2 + x)

    assert Poly(x*y + 1).integrate(x) == Poly(x**2*y/2 + x)
    assert Poly(x*y + 1).integrate(y) == Poly(x*y**2/2 + y)

    assert Poly(x*y + 1).integrate(x, x) == Poly(x**3*y/6 + x**2/2)
    assert Poly(x*y + 1).integrate(y, y) == Poly(x*y**3/6 + y**2/2)

    assert Poly(x*y + 1).integrate((x, 2)) == Poly(x**3*y/6 + x**2/2)
    assert Poly(x*y + 1).integrate((y, 2)) == Poly(x*y**3/6 + y**2/2)

    assert Poly(x*y + 1).integrate(x, y) == Poly(x**2*y**2/4 + x*y)
    assert Poly(x*y + 1).integrate(y, x) == Poly(x**2*y**2/4 + x*y)


def test_Poly_diff():
    assert Poly(x**2 + x).diff() == Poly(2*x + 1)
    assert Poly(x**2 + x).diff(x) == Poly(2*x + 1)
    assert Poly(x**2 + x).diff((x, 1)) == Poly(2*x + 1)

    assert Poly(x**2*y**2 + x*y).diff(x) == Poly(2*x*y**2 + y)
    assert Poly(x**2*y**2 + x*y).diff(y) == Poly(2*x**2*y + x)

    assert Poly(x**2*y**2 + x*y).diff(x, x) == Poly(2*y**2, x, y)
    assert Poly(x**2*y**2 + x*y).diff(y, y) == Poly(2*x**2, x, y)

    assert Poly(x**2*y**2 + x*y).diff((x, 2)) == Poly(2*y**2, x, y)
    assert Poly(x**2*y**2 + x*y).diff((y, 2)) == Poly(2*x**2, x, y)

    assert Poly(x**2*y**2 + x*y).diff(x, y) == Poly(4*x*y + 1)
    assert Poly(x**2*y**2 + x*y).diff(y, x) == Poly(4*x*y + 1)


def test_issue_9585():
    assert diff(Poly(x**2 + x)) == Poly(2*x + 1)
    assert diff(Poly(x**2 + x), x, evaluate=False) == \
        Derivative(Poly(x**2 + x), x)
    assert Derivative(Poly(x**2 + x), x).doit() == Poly(2*x + 1)


def test_Poly_eval():
    assert Poly(0, x).eval(7) == 0
    assert Poly(1, x).eval(7) == 1
    assert Poly(x, x).eval(7) == 7

    assert Poly(0, x).eval(0, 7) == 0
    assert Poly(1, x).eval(0, 7) == 1
    assert Poly(x, x).eval(0, 7) == 7

    assert Poly(0, x).eval(x, 7) == 0
    assert Poly(1, x).eval(x, 7) == 1
    assert Poly(x, x).eval(x, 7) == 7

    assert Poly(0, x).eval('x', 7) == 0
    assert Poly(1, x).eval('x', 7) == 1
    assert Poly(x, x).eval('x', 7) == 7

    raises(PolynomialError, lambda: Poly(1, x).eval(1, 7))
    raises(PolynomialError, lambda: Poly(1, x).eval(y, 7))
    raises(PolynomialError, lambda: Poly(1, x).eval('y', 7))

    assert Poly(123, x, y).eval(7) == Poly(123, y)
    assert Poly(2*y, x, y).eval(7) == Poly(2*y, y)
    assert Poly(x*y, x, y).eval(7) == Poly(7*y, y)

    assert Poly(123, x, y).eval(x, 7) == Poly(123, y)
    assert Poly(2*y, x, y).eval(x, 7) == Poly(2*y, y)
    assert Poly(x*y, x, y).eval(x, 7) == Poly(7*y, y)

    assert Poly(123, x, y).eval(y, 7) == Poly(123, x)
    assert Poly(2*y, x, y).eval(y, 7) == Poly(14, x)
    assert Poly(x*y, x, y).eval(y, 7) == Poly(7*x, x)

    assert Poly(x*y + y, x, y).eval({x: 7}) == Poly(8*y, y)
    assert Poly(x*y + y, x, y).eval({y: 7}) == Poly(7*x + 7, x)

    assert Poly(x*y + y, x, y).eval({x: 6, y: 7}) == 49
    assert Poly(x*y + y, x, y).eval({x: 7, y: 6}) == 48

    assert Poly(x*y + y, x, y).eval((6, 7)) == 49
    assert Poly(x*y + y, x, y).eval([6, 7]) == 49

    assert Poly(x + 1, domain='ZZ').eval(S.Half) == Rational(3, 2)
    assert Poly(x + 1, domain='ZZ').eval(sqrt(2)) == sqrt(2) + 1

    raises(ValueError, lambda: Poly(x*y + y, x, y).eval((6, 7, 8)))
    raises(DomainError, lambda: Poly(x + 1, domain='ZZ').eval(S.Half, auto=False))

    # issue 6344
    alpha = Symbol('alpha')
    result = (2*alpha*z - 2*alpha + z**2 + 3)/(z**2 - 2*z + 1)

    f = Poly(x**2 + (alpha - 1)*x - alpha + 1, x, domain='ZZ[alpha]')
    assert f.eval((z + 1)/(z - 1)) == result

    g = Poly(x**2 + (alpha - 1)*x - alpha + 1, x, y, domain='ZZ[alpha]')
    assert g.eval((z + 1)/(z - 1)) == Poly(result, y, domain='ZZ(alpha,z)')

def test_Poly___call__():
    f = Poly(2*x*y + 3*x + y + 2*z)

    assert f(2) == Poly(5*y + 2*z + 6)
    assert f(2, 5) == Poly(2*z + 31)
    assert f(2, 5, 7) == 45


def test_parallel_poly_from_expr():
    assert parallel_poly_from_expr(
        [x - 1, x**2 - 1], x)[0] == [Poly(x - 1, x), Poly(x**2 - 1, x)]
    assert parallel_poly_from_expr(
        [Poly(x - 1, x), x**2 - 1], x)[0] == [Poly(x - 1, x), Poly(x**2 - 1, x)]
    assert parallel_poly_from_expr(
        [x - 1, Poly(x**2 - 1, x)], x)[0] == [Poly(x - 1, x), Poly(x**2 - 1, x)]
    assert parallel_poly_from_expr([Poly(
        x - 1, x), Poly(x**2 - 1, x)], x)[0] == [Poly(x - 1, x), Poly(x**2 - 1, x)]

    assert parallel_poly_from_expr(
        [x - 1, x**2 - 1], x, y)[0] == [Poly(x - 1, x, y), Poly(x**2 - 1, x, y)]
    assert parallel_poly_from_expr([Poly(
        x - 1, x), x**2 - 1], x, y)[0] == [Poly(x - 1, x, y), Poly(x**2 - 1, x, y)]
    assert parallel_poly_from_expr([x - 1, Poly(
        x**2 - 1, x)], x, y)[0] == [Poly(x - 1, x, y), Poly(x**2 - 1, x, y)]
    assert parallel_poly_from_expr([Poly(x - 1, x), Poly(
        x**2 - 1, x)], x, y)[0] == [Poly(x - 1, x, y), Poly(x**2 - 1, x, y)]

    assert parallel_poly_from_expr(
        [x - 1, x**2 - 1])[0] == [Poly(x - 1, x), Poly(x**2 - 1, x)]
    assert parallel_poly_from_expr(
        [Poly(x - 1, x), x**2 - 1])[0] == [Poly(x - 1, x), Poly(x**2 - 1, x)]
    assert parallel_poly_from_expr(
        [x - 1, Poly(x**2 - 1, x)])[0] == [Poly(x - 1, x), Poly(x**2 - 1, x)]
    assert parallel_poly_from_expr(
        [Poly(x - 1, x), Poly(x**2 - 1, x)])[0] == [Poly(x - 1, x), Poly(x**2 - 1, x)]

    assert parallel_poly_from_expr(
        [1, x**2 - 1])[0] == [Poly(1, x), Poly(x**2 - 1, x)]
    assert parallel_poly_from_expr(
        [1, x**2 - 1])[0] == [Poly(1, x), Poly(x**2 - 1, x)]
    assert parallel_poly_from_expr(
        [1, Poly(x**2 - 1, x)])[0] == [Poly(1, x), Poly(x**2 - 1, x)]
    assert parallel_poly_from_expr(
        [1, Poly(x**2 - 1, x)])[0] == [Poly(1, x), Poly(x**2 - 1, x)]

    assert parallel_poly_from_expr(
        [x**2 - 1, 1])[0] == [Poly(x**2 - 1, x), Poly(1, x)]
    assert parallel_poly_from_expr(
        [x**2 - 1, 1])[0] == [Poly(x**2 - 1, x), Poly(1, x)]
    assert parallel_poly_from_expr(
        [Poly(x**2 - 1, x), 1])[0] == [Poly(x**2 - 1, x), Poly(1, x)]
    assert parallel_poly_from_expr(
        [Poly(x**2 - 1, x), 1])[0] == [Poly(x**2 - 1, x), Poly(1, x)]

    assert parallel_poly_from_expr([Poly(x, x, y), Poly(y, x, y)], x, y, order='lex')[0] == \
        [Poly(x, x, y, domain='ZZ'), Poly(y, x, y, domain='ZZ')]

    raises(PolificationFailed, lambda: parallel_poly_from_expr([0, 1]))


def test_pdiv():
    f, g = x**2 - y**2, x - y
    q, r = x + y, 0

    F, G, Q, R = [ Poly(h, x, y) for h in (f, g, q, r) ]

    assert F.pdiv(G) == (Q, R)
    assert F.prem(G) == R
    assert F.pquo(G) == Q
    assert F.pexquo(G) == Q

    assert pdiv(f, g) == (q, r)
    assert prem(f, g) == r
    assert pquo(f, g) == q
    assert pexquo(f, g) == q

    assert pdiv(f, g, x, y) == (q, r)
    assert prem(f, g, x, y) == r
    assert pquo(f, g, x, y) == q
    assert pexquo(f, g, x, y) == q

    assert pdiv(f, g, (x, y)) == (q, r)
    assert prem(f, g, (x, y)) == r
    assert pquo(f, g, (x, y)) == q
    assert pexquo(f, g, (x, y)) == q

    assert pdiv(F, G) == (Q, R)
    assert prem(F, G) == R
    assert pquo(F, G) == Q
    assert pexquo(F, G) == Q

    assert pdiv(f, g, polys=True) == (Q, R)
    assert prem(f, g, polys=True) == R
    assert pquo(f, g, polys=True) == Q
    assert pexquo(f, g, polys=True) == Q

    assert pdiv(F, G, polys=False) == (q, r)
    assert prem(F, G, polys=False) == r
    assert pquo(F, G, polys=False) == q
    assert pexquo(F, G, polys=False) == q

    raises(ComputationFailed, lambda: pdiv(4, 2))
    raises(ComputationFailed, lambda: prem(4, 2))
    raises(ComputationFailed, lambda: pquo(4, 2))
    raises(ComputationFailed, lambda: pexquo(4, 2))


def test_div():
    f, g = x**2 - y**2, x - y
    q, r = x + y, 0

    F, G, Q, R = [ Poly(h, x, y) for h in (f, g, q, r) ]

    assert F.div(G) == (Q, R)
    assert F.rem(G) == R
    assert F.quo(G) == Q
    assert F.exquo(G) == Q

    assert div(f, g) == (q, r)
    assert rem(f, g) == r
    assert quo(f, g) == q
    assert exquo(f, g) == q

    assert div(f, g, x, y) == (q, r)
    assert rem(f, g, x, y) == r
    assert quo(f, g, x, y) == q
    assert exquo(f, g, x, y) == q

    assert div(f, g, (x, y)) == (q, r)
    assert rem(f, g, (x, y)) == r
    assert quo(f, g, (x, y)) == q
    assert exquo(f, g, (x, y)) == q

    assert div(F, G) == (Q, R)
    assert rem(F, G) == R
    assert quo(F, G) == Q
    assert exquo(F, G) == Q

    assert div(f, g, polys=True) == (Q, R)
    assert rem(f, g, polys=True) == R
    assert quo(f, g, polys=True) == Q
    assert exquo(f, g, polys=True) == Q

    assert div(F, G, polys=False) == (q, r)
    assert rem(F, G, polys=False) == r
    assert quo(F, G, polys=False) == q
    assert exquo(F, G, polys=False) == q

    raises(ComputationFailed, lambda: div(4, 2))
    raises(ComputationFailed, lambda: rem(4, 2))
    raises(ComputationFailed, lambda: quo(4, 2))
    raises(ComputationFailed, lambda: exquo(4, 2))

    f, g = x**2 + 1, 2*x - 4

    qz, rz = 0, x**2 + 1
    qq, rq = x/2 + 1, 5

    assert div(f, g) == (qq, rq)
    assert div(f, g, auto=True) == (qq, rq)
    assert div(f, g, auto=False) == (qz, rz)
    assert div(f, g, domain=ZZ) == (qz, rz)
    assert div(f, g, domain=QQ) == (qq, rq)
    assert div(f, g, domain=ZZ, auto=True) == (qq, rq)
    assert div(f, g, domain=ZZ, auto=False) == (qz, rz)
    assert div(f, g, domain=QQ, auto=True) == (qq, rq)
    assert div(f, g, domain=QQ, auto=False) == (qq, rq)

    assert rem(f, g) == rq
    assert rem(f, g, auto=True) == rq
    assert rem(f, g, auto=False) == rz
    assert rem(f, g, domain=ZZ) == rz
    assert rem(f, g, domain=QQ) == rq
    assert rem(f, g, domain=ZZ, auto=True) == rq
    assert rem(f, g, domain=ZZ, auto=False) == rz
    assert rem(f, g, domain=QQ, auto=True) == rq
    assert rem(f, g, domain=QQ, auto=False) == rq

    assert quo(f, g) == qq
    assert quo(f, g, auto=True) == qq
    assert quo(f, g, auto=False) == qz
    assert quo(f, g, domain=ZZ) == qz
    assert quo(f, g, domain=QQ) == qq
    assert quo(f, g, domain=ZZ, auto=True) == qq
    assert quo(f, g, domain=ZZ, auto=False) == qz
    assert quo(f, g, domain=QQ, auto=True) == qq
    assert quo(f, g, domain=QQ, auto=False) == qq

    f, g, q = x**2, 2*x, x/2

    assert exquo(f, g) == q
    assert exquo(f, g, auto=True) == q
    raises(ExactQuotientFailed, lambda: exquo(f, g, auto=False))
    raises(ExactQuotientFailed, lambda: exquo(f, g, domain=ZZ))
    assert exquo(f, g, domain=QQ) == q
    assert exquo(f, g, domain=ZZ, auto=True) == q
    raises(ExactQuotientFailed, lambda: exquo(f, g, domain=ZZ, auto=False))
    assert exquo(f, g, domain=QQ, auto=True) == q
    assert exquo(f, g, domain=QQ, auto=False) == q

    f, g = Poly(x**2), Poly(x)

    q, r = f.div(g)
    assert q.get_domain().is_ZZ and r.get_domain().is_ZZ
    r = f.rem(g)
    assert r.get_domain().is_ZZ
    q = f.quo(g)
    assert q.get_domain().is_ZZ
    q = f.exquo(g)
    assert q.get_domain().is_ZZ

    f, g = Poly(x+y, x), Poly(2*x+y, x)
    q, r = f.div(g)
    assert q.get_domain().is_Frac and r.get_domain().is_Frac

    # https://github.com/sympy/sympy/issues/19579
    p = Poly(2+3*I, x, domain=ZZ_I)
    q = Poly(1-I, x, domain=ZZ_I)
    assert p.div(q, auto=False) == \
        (Poly(0, x, domain='ZZ_I'), Poly(2 + 3*I, x, domain='ZZ_I'))
    assert p.div(q, auto=True) == \
        (Poly(-S(1)/2 + 5*I/2, x, domain='QQ_I'), Poly(0, x, domain='QQ_I'))


def test_issue_7864():
    q, r = div(a, .408248290463863*a)
    assert abs(q - 2.44948974278318) < 1e-14
    assert r == 0


def test_gcdex():
    f, g = 2*x, x**2 - 16
    s, t, h = x/32, Rational(-1, 16), 1

    F, G, S, T, H = [ Poly(u, x, domain='QQ') for u in (f, g, s, t, h) ]

    assert F.half_gcdex(G) == (S, H)
    assert F.gcdex(G) == (S, T, H)
    assert F.invert(G) == S

    assert half_gcdex(f, g) == (s, h)
    assert gcdex(f, g) == (s, t, h)
    assert invert(f, g) == s

    assert half_gcdex(f, g, x) == (s, h)
    assert gcdex(f, g, x) == (s, t, h)
    assert invert(f, g, x) == s

    assert half_gcdex(f, g, (x,)) == (s, h)
    assert gcdex(f, g, (x,)) == (s, t, h)
    assert invert(f, g, (x,)) == s

    assert half_gcdex(F, G) == (S, H)
    assert gcdex(F, G) == (S, T, H)
    assert invert(F, G) == S

    assert half_gcdex(f, g, polys=True) == (S, H)
    assert gcdex(f, g, polys=True) == (S, T, H)
    assert invert(f, g, polys=True) == S

    assert half_gcdex(F, G, polys=False) == (s, h)
    assert gcdex(F, G, polys=False) == (s, t, h)
    assert invert(F, G, polys=False) == s

    assert half_gcdex(100, 2004) == (-20, 4)
    assert gcdex(100, 2004) == (-20, 1, 4)
    assert invert(3, 7) == 5

    raises(DomainError, lambda: half_gcdex(x + 1, 2*x + 1, auto=False))
    raises(DomainError, lambda: gcdex(x + 1, 2*x + 1, auto=False))
    raises(DomainError, lambda: invert(x + 1, 2*x + 1, auto=False))


def test_revert():
    f = Poly(1 - x**2/2 + x**4/24 - x**6/720)
    g = Poly(61*x**6/720 + 5*x**4/24 + x**2/2 + 1)

    assert f.revert(8) == g


def test_subresultants():
    f, g, h = x**2 - 2*x + 1, x**2 - 1, 2*x - 2
    F, G, H = Poly(f), Poly(g), Poly(h)

    assert F.subresultants(G) == [F, G, H]
    assert subresultants(f, g) == [f, g, h]
    assert subresultants(f, g, x) == [f, g, h]
    assert subresultants(f, g, (x,)) == [f, g, h]
    assert subresultants(F, G) == [F, G, H]
    assert subresultants(f, g, polys=True) == [F, G, H]
    assert subresultants(F, G, polys=False) == [f, g, h]

    raises(ComputationFailed, lambda: subresultants(4, 2))


def test_resultant():
    f, g, h = x**2 - 2*x + 1, x**2 - 1, 0
    F, G = Poly(f), Poly(g)

    assert F.resultant(G) == h
    assert resultant(f, g) == h
    assert resultant(f, g, x) == h
    assert resultant(f, g, (x,)) == h
    assert resultant(F, G) == h
    assert resultant(f, g, polys=True) == h
    assert resultant(F, G, polys=False) == h
    assert resultant(f, g, includePRS=True) == (h, [f, g, 2*x - 2])

    f, g, h = x - a, x - b, a - b
    F, G, H = Poly(f), Poly(g), Poly(h)

    assert F.resultant(G) == H
    assert resultant(f, g) == h
    assert resultant(f, g, x) == h
    assert resultant(f, g, (x,)) == h
    assert resultant(F, G) == H
    assert resultant(f, g, polys=True) == H
    assert resultant(F, G, polys=False) == h

    raises(ComputationFailed, lambda: resultant(4, 2))


def test_discriminant():
    f, g = x**3 + 3*x**2 + 9*x - 13, -11664
    F = Poly(f)

    assert F.discriminant() == g
    assert discriminant(f) == g
    assert discriminant(f, x) == g
    assert discriminant(f, (x,)) == g
    assert discriminant(F) == g
    assert discriminant(f, polys=True) == g
    assert discriminant(F, polys=False) == g

    f, g = a*x**2 + b*x + c, b**2 - 4*a*c
    F, G = Poly(f), Poly(g)

    assert F.discriminant() == G
    assert discriminant(f) == g
    assert discriminant(f, x, a, b, c) == g
    assert discriminant(f, (x, a, b, c)) == g
    assert discriminant(F) == G
    assert discriminant(f, polys=True) == G
    assert discriminant(F, polys=False) == g

    raises(ComputationFailed, lambda: discriminant(4))


def test_dispersion():
    # We test only the API here. For more mathematical
    # tests see the dedicated test file.
    fp = poly((x + 1)*(x + 2), x)
    assert sorted(fp.dispersionset()) == [0, 1]
    assert fp.dispersion() == 1

    fp = poly(x**4 - 3*x**2 + 1, x)
    gp = fp.shift(-3)
    assert sorted(fp.dispersionset(gp)) == [2, 3, 4]
    assert fp.dispersion(gp) == 4


def test_gcd_list():
    F = [x**3 - 1, x**2 - 1, x**2 - 3*x + 2]

    assert gcd_list(F) == x - 1
    assert gcd_list(F, polys=True) == Poly(x - 1)

    assert gcd_list([]) == 0
    assert gcd_list([1, 2]) == 1
    assert gcd_list([4, 6, 8]) == 2

    assert gcd_list([x*(y + 42) - x*y - x*42]) == 0

    gcd = gcd_list([], x)
    assert gcd.is_Number and gcd is S.Zero

    gcd = gcd_list([], x, polys=True)
    assert gcd.is_Poly and gcd.is_zero

    a = sqrt(2)
    assert gcd_list([a, -a]) == gcd_list([-a, a]) == a

    raises(ComputationFailed, lambda: gcd_list([], polys=True))


def test_lcm_list():
    F = [x**3 - 1, x**2 - 1, x**2 - 3*x + 2]

    assert lcm_list(F) == x**5 - x**4 - 2*x**3 - x**2 + x + 2
    assert lcm_list(F, polys=True) == Poly(x**5 - x**4 - 2*x**3 - x**2 + x + 2)

    assert lcm_list([]) == 1
    assert lcm_list([1, 2]) == 2
    assert lcm_list([4, 6, 8]) == 24

    assert lcm_list([x*(y + 42) - x*y - x*42]) == 0

    lcm = lcm_list([], x)
    assert lcm.is_Number and lcm is S.One

    lcm = lcm_list([], x, polys=True)
    assert lcm.is_Poly and lcm.is_one

    raises(ComputationFailed, lambda: lcm_list([], polys=True))


def test_gcd():
    f, g = x**3 - 1, x**2 - 1
    s, t = x**2 + x + 1, x + 1
    h, r = x - 1, x**4 + x**3 - x - 1

    F, G, S, T, H, R = [ Poly(u) for u in (f, g, s, t, h, r) ]

    assert F.cofactors(G) == (H, S, T)
    assert F.gcd(G) == H
    assert F.lcm(G) == R

    assert cofactors(f, g) == (h, s, t)
    assert gcd(f, g) == h
    assert lcm(f, g) == r

    assert cofactors(f, g, x) == (h, s, t)
    assert gcd(f, g, x) == h
    assert lcm(f, g, x) == r

    assert cofactors(f, g, (x,)) == (h, s, t)
    assert gcd(f, g, (x,)) == h
    assert lcm(f, g, (x,)) == r

    assert cofactors(F, G) == (H, S, T)
    assert gcd(F, G) == H
    assert lcm(F, G) == R

    assert cofactors(f, g, polys=True) == (H, S, T)
    assert gcd(f, g, polys=True) == H
    assert lcm(f, g, polys=True) == R

    assert cofactors(F, G, polys=False) == (h, s, t)
    assert gcd(F, G, polys=False) == h
    assert lcm(F, G, polys=False) == r

    f, g = 1.0*x**2 - 1.0, 1.0*x - 1.0
    h, s, t = g, 1.0*x + 1.0, 1.0

    assert cofactors(f, g) == (h, s, t)
    assert gcd(f, g) == h
    assert lcm(f, g) == f

    f, g = 1.0*x**2 - 1.0, 1.0*x - 1.0
    h, s, t = g, 1.0*x + 1.0, 1.0

    assert cofactors(f, g) == (h, s, t)
    assert gcd(f, g) == h
    assert lcm(f, g) == f

    assert cofactors(8, 6) == (2, 4, 3)
    assert gcd(8, 6) == 2
    assert lcm(8, 6) == 24

    f, g = x**2 - 3*x - 4, x**3 - 4*x**2 + x - 4
    l = x**4 - 3*x**3 - 3*x**2 - 3*x - 4
    h, s, t = x - 4, x + 1, x**2 + 1

    assert cofactors(f, g, modulus=11) == (h, s, t)
    assert gcd(f, g, modulus=11) == h
    assert lcm(f, g, modulus=11) == l

    f, g = x**2 + 8*x + 7, x**3 + 7*x**2 + x + 7
    l = x**4 + 8*x**3 + 8*x**2 + 8*x + 7
    h, s, t = x + 7, x + 1, x**2 + 1

    assert cofactors(f, g, modulus=11, symmetric=False) == (h, s, t)
    assert gcd(f, g, modulus=11, symmetric=False) == h
    assert lcm(f, g, modulus=11, symmetric=False) == l

    a, b = sqrt(2), -sqrt(2)
    assert gcd(a, b) == gcd(b, a) == sqrt(2)

    a, b = sqrt(-2), -sqrt(-2)
    assert gcd(a, b) == gcd(b, a) == sqrt(2)

    assert gcd(Poly(x - 2, x), Poly(I*x, x)) == Poly(1, x, domain=ZZ_I)

    raises(TypeError, lambda: gcd(x))
    raises(TypeError, lambda: lcm(x))


def test_gcd_numbers_vs_polys():
    assert isinstance(gcd(3, 9), Integer)
    assert isinstance(gcd(3*x, 9), Integer)

    assert gcd(3, 9) == 3
    assert gcd(3*x, 9) == 3

    assert isinstance(gcd(Rational(3, 2), Rational(9, 4)), Rational)
    assert isinstance(gcd(Rational(3, 2)*x, Rational(9, 4)), Rational)

    assert gcd(Rational(3, 2), Rational(9, 4)) == Rational(3, 4)
    assert gcd(Rational(3, 2)*x, Rational(9, 4)) == 1

    assert isinstance(gcd(3.0, 9.0), Float)
    assert isinstance(gcd(3.0*x, 9.0), Float)

    assert gcd(3.0, 9.0) == 1.0
    assert gcd(3.0*x, 9.0) == 1.0

    # partial fix of 20597
    assert gcd(Mul(2, 3, evaluate=False), 2) == 2


def test_terms_gcd():
    assert terms_gcd(1) == 1
    assert terms_gcd(1, x) == 1

    assert terms_gcd(x - 1) == x - 1
    assert terms_gcd(-x - 1) == -x - 1

    assert terms_gcd(2*x + 3) == 2*x + 3
    assert terms_gcd(6*x + 4) == Mul(2, 3*x + 2, evaluate=False)

    assert terms_gcd(x**3*y + x*y**3) == x*y*(x**2 + y**2)
    assert terms_gcd(2*x**3*y + 2*x*y**3) == 2*x*y*(x**2 + y**2)
    assert terms_gcd(x**3*y/2 + x*y**3/2) == x*y/2*(x**2 + y**2)

    assert terms_gcd(x**3*y + 2*x*y**3) == x*y*(x**2 + 2*y**2)
    assert terms_gcd(2*x**3*y + 4*x*y**3) == 2*x*y*(x**2 + 2*y**2)
    assert terms_gcd(2*x**3*y/3 + 4*x*y**3/5) == x*y*Rational(2, 15)*(5*x**2 + 6*y**2)

    assert terms_gcd(2.0*x**3*y + 4.1*x*y**3) == x*y*(2.0*x**2 + 4.1*y**2)
    assert _aresame(terms_gcd(2.0*x + 3), 2.0*x + 3)

    assert terms_gcd((3 + 3*x)*(x + x*y), expand=False) == \
        (3*x + 3)*(x*y + x)
    assert terms_gcd((3 + 3*x)*(x + x*sin(3 + 3*y)), expand=False, deep=True) == \
        3*x*(x + 1)*(sin(Mul(3, y + 1, evaluate=False)) + 1)
    assert terms_gcd(sin(x + x*y), deep=True) == \
        sin(x*(y + 1))

    eq = Eq(2*x, 2*y + 2*z*y)
    assert terms_gcd(eq) == Eq(2*x, 2*y*(z + 1))
    assert terms_gcd(eq, deep=True) == Eq(2*x, 2*y*(z + 1))

    raises(TypeError, lambda: terms_gcd(x < 2))


def test_trunc():
    f, g = x**5 + 2*x**4 + 3*x**3 + 4*x**2 + 5*x + 6, x**5 - x**4 + x**2 - x
    F, G = Poly(f), Poly(g)

    assert F.trunc(3) == G
    assert trunc(f, 3) == g
    assert trunc(f, 3, x) == g
    assert trunc(f, 3, (x,)) == g
    assert trunc(F, 3) == G
    assert trunc(f, 3, polys=True) == G
    assert trunc(F, 3, polys=False) == g

    f, g = 6*x**5 + 5*x**4 + 4*x**3 + 3*x**2 + 2*x + 1, -x**4 + x**3 - x + 1
    F, G = Poly(f), Poly(g)

    assert F.trunc(3) == G
    assert trunc(f, 3) == g
    assert trunc(f, 3, x) == g
    assert trunc(f, 3, (x,)) == g
    assert trunc(F, 3) == G
    assert trunc(f, 3, polys=True) == G
    assert trunc(F, 3, polys=False) == g

    f = Poly(x**2 + 2*x + 3, modulus=5)

    assert f.trunc(2) == Poly(x**2 + 1, modulus=5)


def test_monic():
    f, g = 2*x - 1, x - S.Half
    F, G = Poly(f, domain='QQ'), Poly(g)

    assert F.monic() == G
    assert monic(f) == g
    assert monic(f, x) == g
    assert monic(f, (x,)) == g
    assert monic(F) == G
    assert monic(f, polys=True) == G
    assert monic(F, polys=False) == g

    raises(ComputationFailed, lambda: monic(4))

    assert monic(2*x**2 + 6*x + 4, auto=False) == x**2 + 3*x + 2
    raises(ExactQuotientFailed, lambda: monic(2*x + 6*x + 1, auto=False))

    assert monic(2.0*x**2 + 6.0*x + 4.0) == 1.0*x**2 + 3.0*x + 2.0
    assert monic(2*x**2 + 3*x + 4, modulus=5) == x**2 - x + 2


def test_content():
    f, F = 4*x + 2, Poly(4*x + 2)

    assert F.content() == 2
    assert content(f) == 2

    raises(ComputationFailed, lambda: content(4))

    f = Poly(2*x, modulus=3)

    assert f.content() == 1


def test_primitive():
    f, g = 4*x + 2, 2*x + 1
    F, G = Poly(f), Poly(g)

    assert F.primitive() == (2, G)
    assert primitive(f) == (2, g)
    assert primitive(f, x) == (2, g)
    assert primitive(f, (x,)) == (2, g)
    assert primitive(F) == (2, G)
    assert primitive(f, polys=True) == (2, G)
    assert primitive(F, polys=False) == (2, g)

    raises(ComputationFailed, lambda: primitive(4))

    f = Poly(2*x, modulus=3)
    g = Poly(2.0*x, domain=RR)

    assert f.primitive() == (1, f)
    assert g.primitive() == (1.0, g)

    assert primitive(S('-3*x/4 + y + 11/8')) == \
        S('(1/8, -6*x + 8*y + 11)')


def test_compose():
    f = x**12 + 20*x**10 + 150*x**8 + 500*x**6 + 625*x**4 - 2*x**3 - 10*x + 9
    g = x**4 - 2*x + 9
    h = x**3 + 5*x

    F, G, H = map(Poly, (f, g, h))

    assert G.compose(H) == F
    assert compose(g, h) == f
    assert compose(g, h, x) == f
    assert compose(g, h, (x,)) == f
    assert compose(G, H) == F
    assert compose(g, h, polys=True) == F
    assert compose(G, H, polys=False) == f

    assert F.decompose() == [G, H]
    assert decompose(f) == [g, h]
    assert decompose(f, x) == [g, h]
    assert decompose(f, (x,)) == [g, h]
    assert decompose(F) == [G, H]
    assert decompose(f, polys=True) == [G, H]
    assert decompose(F, polys=False) == [g, h]

    raises(ComputationFailed, lambda: compose(4, 2))
    raises(ComputationFailed, lambda: decompose(4))

    assert compose(x**2 - y**2, x - y, x, y) == x**2 - 2*x*y
    assert compose(x**2 - y**2, x - y, y, x) == -y**2 + 2*x*y


def test_shift():
    assert Poly(x**2 - 2*x + 1, x).shift(2) == Poly(x**2 + 2*x + 1, x)

def test_transform():
    # Also test that 3-way unification is done correctly
    assert Poly(x**2 - 2*x + 1, x).transform(Poly(x + 1), Poly(x - 1)) == \
        Poly(4, x) == \
        cancel((x - 1)**2*(x**2 - 2*x + 1).subs(x, (x + 1)/(x - 1)))

    assert Poly(x**2 - x/2 + 1, x).transform(Poly(x + 1), Poly(x - 1)) == \
        Poly(3*x**2/2 + Rational(5, 2), x) == \
        cancel((x - 1)**2*(x**2 - x/2 + 1).subs(x, (x + 1)/(x - 1)))

    assert Poly(x**2 - 2*x + 1, x).transform(Poly(x + S.Half), Poly(x - 1)) == \
        Poly(Rational(9, 4), x) == \
        cancel((x - 1)**2*(x**2 - 2*x + 1).subs(x, (x + S.Half)/(x - 1)))

    assert Poly(x**2 - 2*x + 1, x).transform(Poly(x + 1), Poly(x - S.Half)) == \
        Poly(Rational(9, 4), x) == \
        cancel((x - S.Half)**2*(x**2 - 2*x + 1).subs(x, (x + 1)/(x - S.Half)))

    # Unify ZZ, QQ, and RR
    assert Poly(x**2 - 2*x + 1, x).transform(Poly(x + 1.0), Poly(x - S.Half)) == \
        Poly(Rational(9, 4), x, domain='RR') == \
        cancel((x - S.Half)**2*(x**2 - 2*x + 1).subs(x, (x + 1.0)/(x - S.Half)))

    raises(ValueError, lambda: Poly(x*y).transform(Poly(x + 1), Poly(x - 1)))
    raises(ValueError, lambda: Poly(x).transform(Poly(y + 1), Poly(x - 1)))
    raises(ValueError, lambda: Poly(x).transform(Poly(x + 1), Poly(y - 1)))
    raises(ValueError, lambda: Poly(x).transform(Poly(x*y + 1), Poly(x - 1)))
    raises(ValueError, lambda: Poly(x).transform(Poly(x + 1), Poly(x*y - 1)))


def test_sturm():
    f, F = x, Poly(x, domain='QQ')
    g, G = 1, Poly(1, x, domain='QQ')

    assert F.sturm() == [F, G]
    assert sturm(f) == [f, g]
    assert sturm(f, x) == [f, g]
    assert sturm(f, (x,)) == [f, g]
    assert sturm(F) == [F, G]
    assert sturm(f, polys=True) == [F, G]
    assert sturm(F, polys=False) == [f, g]

    raises(ComputationFailed, lambda: sturm(4))
    raises(DomainError, lambda: sturm(f, auto=False))

    f = Poly(S(1024)/(15625*pi**8)*x**5
           - S(4096)/(625*pi**8)*x**4
           + S(32)/(15625*pi**4)*x**3
           - S(128)/(625*pi**4)*x**2
           + Rational(1, 62500)*x
           - Rational(1, 625), x, domain='ZZ(pi)')

    assert sturm(f) == \
        [Poly(x**3 - 100*x**2 + pi**4/64*x - 25*pi**4/16, x, domain='ZZ(pi)'),
         Poly(3*x**2 - 200*x + pi**4/64, x, domain='ZZ(pi)'),
         Poly((Rational(20000, 9) - pi**4/96)*x + 25*pi**4/18, x, domain='ZZ(pi)'),
         Poly((-3686400000000*pi**4 - 11520000*pi**8 - 9*pi**12)/(26214400000000 - 245760000*pi**4 + 576*pi**8), x, domain='ZZ(pi)')]


def test_gff():
    f = x**5 + 2*x**4 - x**3 - 2*x**2

    assert Poly(f).gff_list() == [(Poly(x), 1), (Poly(x + 2), 4)]
    assert gff_list(f) == [(x, 1), (x + 2, 4)]

    raises(NotImplementedError, lambda: gff(f))

    f = x*(x - 1)**3*(x - 2)**2*(x - 4)**2*(x - 5)

    assert Poly(f).gff_list() == [(
        Poly(x**2 - 5*x + 4), 1), (Poly(x**2 - 5*x + 4), 2), (Poly(x), 3)]
    assert gff_list(f) == [(x**2 - 5*x + 4, 1), (x**2 - 5*x + 4, 2), (x, 3)]

    raises(NotImplementedError, lambda: gff(f))


def test_norm():
    a, b = sqrt(2), sqrt(3)
    f = Poly(a*x + b*y, x, y, extension=(a, b))
    assert f.norm() == Poly(4*x**4 - 12*x**2*y**2 + 9*y**4, x, y, domain='QQ')


def test_sqf_norm():
    assert sqf_norm(x**2 - 2, extension=sqrt(3)) == \
        (1, x**2 - 2*sqrt(3)*x + 1, x**4 - 10*x**2 + 1)
    assert sqf_norm(x**2 - 3, extension=sqrt(2)) == \
        (1, x**2 - 2*sqrt(2)*x - 1, x**4 - 10*x**2 + 1)

    assert Poly(x**2 - 2, extension=sqrt(3)).sqf_norm() == \
        (1, Poly(x**2 - 2*sqrt(3)*x + 1, x, extension=sqrt(3)),
            Poly(x**4 - 10*x**2 + 1, x, domain='QQ'))

    assert Poly(x**2 - 3, extension=sqrt(2)).sqf_norm() == \
        (1, Poly(x**2 - 2*sqrt(2)*x - 1, x, extension=sqrt(2)),
            Poly(x**4 - 10*x**2 + 1, x, domain='QQ'))


def test_sqf():
    f = x**5 - x**3 - x**2 + 1
    g = x**3 + 2*x**2 + 2*x + 1
    h = x - 1

    p = x**4 + x**3 - x - 1

    F, G, H, P = map(Poly, (f, g, h, p))

    assert F.sqf_part() == P
    assert sqf_part(f) == p
    assert sqf_part(f, x) == p
    assert sqf_part(f, (x,)) == p
    assert sqf_part(F) == P
    assert sqf_part(f, polys=True) == P
    assert sqf_part(F, polys=False) == p

    assert F.sqf_list() == (1, [(G, 1), (H, 2)])
    assert sqf_list(f) == (1, [(g, 1), (h, 2)])
    assert sqf_list(f, x) == (1, [(g, 1), (h, 2)])
    assert sqf_list(f, (x,)) == (1, [(g, 1), (h, 2)])
    assert sqf_list(F) == (1, [(G, 1), (H, 2)])
    assert sqf_list(f, polys=True) == (1, [(G, 1), (H, 2)])
    assert sqf_list(F, polys=False) == (1, [(g, 1), (h, 2)])

    assert F.sqf_list_include() == [(G, 1), (H, 2)]

    raises(ComputationFailed, lambda: sqf_part(4))

    assert sqf(1) == 1
    assert sqf_list(1) == (1, [])

    assert sqf((2*x**2 + 2)**7) == 128*(x**2 + 1)**7

    assert sqf(f) == g*h**2
    assert sqf(f, x) == g*h**2
    assert sqf(f, (x,)) == g*h**2

    d = x**2 + y**2

    assert sqf(f/d) == (g*h**2)/d
    assert sqf(f/d, x) == (g*h**2)/d
    assert sqf(f/d, (x,)) == (g*h**2)/d

    assert sqf(x - 1) == x - 1
    assert sqf(-x - 1) == -x - 1

    assert sqf(x - 1) == x - 1
    assert sqf(6*x - 10) == Mul(2, 3*x - 5, evaluate=False)

    assert sqf((6*x - 10)/(3*x - 6)) == Rational(2, 3)*((3*x - 5)/(x - 2))
    assert sqf(Poly(x**2 - 2*x + 1)) == (x - 1)**2

    f = 3 + x - x*(1 + x) + x**2

    assert sqf(f) == 3

    f = (x**2 + 2*x + 1)**20000000000

    assert sqf(f) == (x + 1)**40000000000
    assert sqf_list(f) == (1, [(x + 1, 40000000000)])


def test_factor():
    f = x**5 - x**3 - x**2 + 1

    u = x + 1
    v = x - 1
    w = x**2 + x + 1

    F, U, V, W = map(Poly, (f, u, v, w))

    assert F.factor_list() == (1, [(U, 1), (V, 2), (W, 1)])
    assert factor_list(f) == (1, [(u, 1), (v, 2), (w, 1)])
    assert factor_list(f, x) == (1, [(u, 1), (v, 2), (w, 1)])
    assert factor_list(f, (x,)) == (1, [(u, 1), (v, 2), (w, 1)])
    assert factor_list(F) == (1, [(U, 1), (V, 2), (W, 1)])
    assert factor_list(f, polys=True) == (1, [(U, 1), (V, 2), (W, 1)])
    assert factor_list(F, polys=False) == (1, [(u, 1), (v, 2), (w, 1)])

    assert F.factor_list_include() == [(U, 1), (V, 2), (W, 1)]

    assert factor_list(1) == (1, [])
    assert factor_list(6) == (6, [])
    assert factor_list(sqrt(3), x) == (sqrt(3), [])
    assert factor_list((-1)**x, x) == (1, [(-1, x)])
    assert factor_list((2*x)**y, x) == (1, [(2, y), (x, y)])
    assert factor_list(sqrt(x*y), x) == (1, [(x*y, S.Half)])

    assert factor(6) == 6 and factor(6).is_Integer

    assert factor_list(3*x) == (3, [(x, 1)])
    assert factor_list(3*x**2) == (3, [(x, 2)])

    assert factor(3*x) == 3*x
    assert factor(3*x**2) == 3*x**2

    assert factor((2*x**2 + 2)**7) == 128*(x**2 + 1)**7

    assert factor(f) == u*v**2*w
    assert factor(f, x) == u*v**2*w
    assert factor(f, (x,)) == u*v**2*w

    g, p, q, r = x**2 - y**2, x - y, x + y, x**2 + 1

    assert factor(f/g) == (u*v**2*w)/(p*q)
    assert factor(f/g, x) == (u*v**2*w)/(p*q)
    assert factor(f/g, (x,)) == (u*v**2*w)/(p*q)

    p = Symbol('p', positive=True)
    i = Symbol('i', integer=True)
    r = Symbol('r', real=True)

    assert factor(sqrt(x*y)).is_Pow is True

    assert factor(sqrt(3*x**2 - 3)) == sqrt(3)*sqrt((x - 1)*(x + 1))
    assert factor(sqrt(3*x**2 + 3)) == sqrt(3)*sqrt(x**2 + 1)

    assert factor((y*x**2 - y)**i) == y**i*(x - 1)**i*(x + 1)**i
    assert factor((y*x**2 + y)**i) == y**i*(x**2 + 1)**i

    assert factor((y*x**2 - y)**t) == (y*(x - 1)*(x + 1))**t
    assert factor((y*x**2 + y)**t) == (y*(x**2 + 1))**t

    f = sqrt(expand((r**2 + 1)*(p + 1)*(p - 1)*(p - 2)**3))
    g = sqrt((p - 2)**3*(p - 1))*sqrt(p + 1)*sqrt(r**2 + 1)

    assert factor(f) == g
    assert factor(g) == g

    g = (x - 1)**5*(r**2 + 1)
    f = sqrt(expand(g))

    assert factor(f) == sqrt(g)

    f = Poly(sin(1)*x + 1, x, domain=EX)

    assert f.factor_list() == (1, [(f, 1)])

    f = x**4 + 1

    assert factor(f) == f
    assert factor(f, extension=I) == (x**2 - I)*(x**2 + I)
    assert factor(f, gaussian=True) == (x**2 - I)*(x**2 + I)
    assert factor(
        f, extension=sqrt(2)) == (x**2 + sqrt(2)*x + 1)*(x**2 - sqrt(2)*x + 1)

    assert factor(x**2 + 4*I*x - 4) == (x + 2*I)**2

    f = x**2 + 2*I*x - 4

    assert factor(f) == f

    f = 8192*x**2 + x*(22656 + 175232*I) - 921416 + 242313*I
    f_zzi = I*(x*(64 - 64*I) + 773 + 596*I)**2
    f_qqi = 8192*(x + S(177)/128 + 1369*I/128)**2

    assert factor(f) == f_zzi
    assert factor(f, domain=ZZ_I) == f_zzi
    assert factor(f, domain=QQ_I) == f_qqi

    f = x**2 + 2*sqrt(2)*x + 2

    assert factor(f, extension=sqrt(2)) == (x + sqrt(2))**2
    assert factor(f**3, extension=sqrt(2)) == (x + sqrt(2))**6

    assert factor(x**2 - 2*y**2, extension=sqrt(2)) == \
        (x + sqrt(2)*y)*(x - sqrt(2)*y)
    assert factor(2*x**2 - 4*y**2, extension=sqrt(2)) == \
        2*((x + sqrt(2)*y)*(x - sqrt(2)*y))

    assert factor(x - 1) == x - 1
    assert factor(-x - 1) == -x - 1

    assert factor(x - 1) == x - 1

    assert factor(6*x - 10) == Mul(2, 3*x - 5, evaluate=False)

    assert factor(x**11 + x + 1, modulus=65537, symmetric=True) == \
        (x**2 + x + 1)*(x**9 - x**8 + x**6 - x**5 + x**3 - x** 2 + 1)
    assert factor(x**11 + x + 1, modulus=65537, symmetric=False) == \
        (x**2 + x + 1)*(x**9 + 65536*x**8 + x**6 + 65536*x**5 +
         x**3 + 65536*x** 2 + 1)

    f = x/pi + x*sin(x)/pi
    g = y/(pi**2 + 2*pi + 1) + y*sin(x)/(pi**2 + 2*pi + 1)

    assert factor(f) == x*(sin(x) + 1)/pi
    assert factor(g) == y*(sin(x) + 1)/(pi + 1)**2

    assert factor(Eq(
        x**2 + 2*x + 1, x**3 + 1)) == Eq((x + 1)**2, (x + 1)*(x**2 - x + 1))

    f = (x**2 - 1)/(x**2 + 4*x + 4)

    assert factor(f) == (x + 1)*(x - 1)/(x + 2)**2
    assert factor(f, x) == (x + 1)*(x - 1)/(x + 2)**2

    f = 3 + x - x*(1 + x) + x**2

    assert factor(f) == 3
    assert factor(f, x) == 3

    assert factor(1/(x**2 + 2*x + 1/x) - 1) == -((1 - x + 2*x**2 +
                  x**3)/(1 + 2*x**2 + x**3))

    assert factor(f, expand=False) == f
    raises(PolynomialError, lambda: factor(f, x, expand=False))

    raises(FlagError, lambda: factor(x**2 - 1, polys=True))

    assert factor([x, Eq(x**2 - y**2, Tuple(x**2 - z**2, 1/x + 1/y))]) == \
        [x, Eq((x - y)*(x + y), Tuple((x - z)*(x + z), (x + y)/x/y))]

    assert not isinstance(
        Poly(x**3 + x + 1).factor_list()[1][0][0], PurePoly) is True
    assert isinstance(
        PurePoly(x**3 + x + 1).factor_list()[1][0][0], PurePoly) is True

    assert factor(sqrt(-x)) == sqrt(-x)

    # issue 5917
    e = (-2*x*(-x + 1)*(x - 1)*(-x*(-x + 1)*(x - 1) - x*(x - 1)**2)*(x**2*(x -
    1) - x*(x - 1) - x) - (-2*x**2*(x - 1)**2 - x*(-x + 1)*(-x*(-x + 1) +
    x*(x - 1)))*(x**2*(x - 1)**4 - x*(-x*(-x + 1)*(x - 1) - x*(x - 1)**2)))
    assert factor(e) == 0

    # deep option
    assert factor(sin(x**2 + x) + x, deep=True) == sin(x*(x + 1)) + x
    assert factor(sin(x**2 + x)*x, deep=True) == sin(x*(x + 1))*x

    assert factor(sqrt(x**2)) == sqrt(x**2)

    # issue 13149
    assert factor(expand((0.5*x+1)*(0.5*y+1))) == Mul(1.0, 0.5*x + 1.0,
        0.5*y + 1.0, evaluate = False)
    assert factor(expand((0.5*x+0.5)**2)) == 0.25*(1.0*x + 1.0)**2

    eq = x**2*y**2 + 11*x**2*y + 30*x**2 + 7*x*y**2 + 77*x*y + 210*x + 12*y**2 + 132*y + 360
    assert factor(eq, x) == (x + 3)*(x + 4)*(y**2 + 11*y + 30)
    assert factor(eq, x, deep=True) == (x + 3)*(x + 4)*(y**2 + 11*y + 30)
    assert factor(eq, y, deep=True) == (y + 5)*(y + 6)*(x**2 + 7*x + 12)

    # fraction option
    f = 5*x + 3*exp(2 - 7*x)
    assert factor(f, deep=True) == factor(f, deep=True, fraction=True)
    assert factor(f, deep=True, fraction=False) == 5*x + 3*exp(2)*exp(-7*x)


def test_factor_large():
    f = (x**2 + 4*x + 4)**10000000*(x**2 + 1)*(x**2 + 2*x + 1)**1234567
    g = ((x**2 + 2*x + 1)**3000*y**2 + (x**2 + 2*x + 1)**3000*2*y + (
        x**2 + 2*x + 1)**3000)

    assert factor(f) == (x + 2)**20000000*(x**2 + 1)*(x + 1)**2469134
    assert factor(g) == (x + 1)**6000*(y + 1)**2

    assert factor_list(
        f) == (1, [(x + 1, 2469134), (x + 2, 20000000), (x**2 + 1, 1)])
    assert factor_list(g) == (1, [(y + 1, 2), (x + 1, 6000)])

    f = (x**2 - y**2)**200000*(x**7 + 1)
    g = (x**2 + y**2)**200000*(x**7 + 1)

    assert factor(f) == \
        (x + 1)*(x - y)**200000*(x + y)**200000*(x**6 - x**5 +
         x**4 - x**3 + x**2 - x + 1)
    assert factor(g, gaussian=True) == \
        (x + 1)*(x - I*y)**200000*(x + I*y)**200000*(x**6 - x**5 +
         x**4 - x**3 + x**2 - x + 1)

    assert factor_list(f) == \
        (1, [(x + 1, 1), (x - y, 200000), (x + y, 200000), (x**6 -
         x**5 + x**4 - x**3 + x**2 - x + 1, 1)])
    assert factor_list(g, gaussian=True) == \
        (1, [(x + 1, 1), (x - I*y, 200000), (x + I*y, 200000), (
            x**6 - x**5 + x**4 - x**3 + x**2 - x + 1, 1)])


def test_factor_noeval():
    assert factor(6*x - 10) == Mul(2, 3*x - 5, evaluate=False)
    assert factor((6*x - 10)/(3*x - 6)) == Mul(Rational(2, 3), 3*x - 5, 1/(x - 2))


def test_intervals():
    assert intervals(0) == []
    assert intervals(1) == []

    assert intervals(x, sqf=True) == [(0, 0)]
    assert intervals(x) == [((0, 0), 1)]

    assert intervals(x**128) == [((0, 0), 128)]
    assert intervals([x**2, x**4]) == [((0, 0), {0: 2, 1: 4})]

    f = Poly((x*Rational(2, 5) - Rational(17, 3))*(4*x + Rational(1, 257)))

    assert f.intervals(sqf=True) == [(-1, 0), (14, 15)]
    assert f.intervals() == [((-1, 0), 1), ((14, 15), 1)]

    assert f.intervals(fast=True, sqf=True) == [(-1, 0), (14, 15)]
    assert f.intervals(fast=True) == [((-1, 0), 1), ((14, 15), 1)]

    assert f.intervals(eps=Rational(1, 10)) == f.intervals(eps=0.1) == \
        [((Rational(-1, 258), 0), 1), ((Rational(85, 6), Rational(85, 6)), 1)]
    assert f.intervals(eps=Rational(1, 100)) == f.intervals(eps=0.01) == \
        [((Rational(-1, 258), 0), 1), ((Rational(85, 6), Rational(85, 6)), 1)]
    assert f.intervals(eps=Rational(1, 1000)) == f.intervals(eps=0.001) == \
        [((Rational(-1, 1002), 0), 1), ((Rational(85, 6), Rational(85, 6)), 1)]
    assert f.intervals(eps=Rational(1, 10000)) == f.intervals(eps=0.0001) == \
        [((Rational(-1, 1028), Rational(-1, 1028)), 1), ((Rational(85, 6), Rational(85, 6)), 1)]

    f = (x*Rational(2, 5) - Rational(17, 3))*(4*x + Rational(1, 257))

    assert intervals(f, sqf=True) == [(-1, 0), (14, 15)]
    assert intervals(f) == [((-1, 0), 1), ((14, 15), 1)]

    assert intervals(f, eps=Rational(1, 10)) == intervals(f, eps=0.1) == \
        [((Rational(-1, 258), 0), 1), ((Rational(85, 6), Rational(85, 6)), 1)]
    assert intervals(f, eps=Rational(1, 100)) == intervals(f, eps=0.01) == \
        [((Rational(-1, 258), 0), 1), ((Rational(85, 6), Rational(85, 6)), 1)]
    assert intervals(f, eps=Rational(1, 1000)) == intervals(f, eps=0.001) == \
        [((Rational(-1, 1002), 0), 1), ((Rational(85, 6), Rational(85, 6)), 1)]
    assert intervals(f, eps=Rational(1, 10000)) == intervals(f, eps=0.0001) == \
        [((Rational(-1, 1028), Rational(-1, 1028)), 1), ((Rational(85, 6), Rational(85, 6)), 1)]

    f = Poly((x**2 - 2)*(x**2 - 3)**7*(x + 1)*(7*x + 3)**3)

    assert f.intervals() == \
        [((-2, Rational(-3, 2)), 7), ((Rational(-3, 2), -1), 1),
         ((-1, -1), 1), ((-1, 0), 3),
         ((1, Rational(3, 2)), 1), ((Rational(3, 2), 2), 7)]

    assert intervals([x**5 - 200, x**5 - 201]) == \
        [((Rational(75, 26), Rational(101, 35)), {0: 1}), ((Rational(309, 107), Rational(26, 9)), {1: 1})]

    assert intervals([x**5 - 200, x**5 - 201], fast=True) == \
        [((Rational(75, 26), Rational(101, 35)), {0: 1}), ((Rational(309, 107), Rational(26, 9)), {1: 1})]

    assert intervals([x**2 - 200, x**2 - 201]) == \
        [((Rational(-71, 5), Rational(-85, 6)), {1: 1}), ((Rational(-85, 6), -14), {0: 1}),
         ((14, Rational(85, 6)), {0: 1}), ((Rational(85, 6), Rational(71, 5)), {1: 1})]

    assert intervals([x + 1, x + 2, x - 1, x + 1, 1, x - 1, x - 1, (x - 2)**2]) == \
        [((-2, -2), {1: 1}), ((-1, -1), {0: 1, 3: 1}), ((1, 1), {2:
          1, 5: 1, 6: 1}), ((2, 2), {7: 2})]

    f, g, h = x**2 - 2, x**4 - 4*x**2 + 4, x - 1

    assert intervals(f, inf=Rational(7, 4), sqf=True) == []
    assert intervals(f, inf=Rational(7, 5), sqf=True) == [(Rational(7, 5), Rational(3, 2))]
    assert intervals(f, sup=Rational(7, 4), sqf=True) == [(-2, -1), (1, Rational(3, 2))]
    assert intervals(f, sup=Rational(7, 5), sqf=True) == [(-2, -1)]

    assert intervals(g, inf=Rational(7, 4)) == []
    assert intervals(g, inf=Rational(7, 5)) == [((Rational(7, 5), Rational(3, 2)), 2)]
    assert intervals(g, sup=Rational(7, 4)) == [((-2, -1), 2), ((1, Rational(3, 2)), 2)]
    assert intervals(g, sup=Rational(7, 5)) == [((-2, -1), 2)]

    assert intervals([g, h], inf=Rational(7, 4)) == []
    assert intervals([g, h], inf=Rational(7, 5)) == [((Rational(7, 5), Rational(3, 2)), {0: 2})]
    assert intervals([g, h], sup=S(
        7)/4) == [((-2, -1), {0: 2}), ((1, 1), {1: 1}), ((1, Rational(3, 2)), {0: 2})]
    assert intervals(
        [g, h], sup=Rational(7, 5)) == [((-2, -1), {0: 2}), ((1, 1), {1: 1})]

    assert intervals([x + 2, x**2 - 2]) == \
        [((-2, -2), {0: 1}), ((-2, -1), {1: 1}), ((1, 2), {1: 1})]
    assert intervals([x + 2, x**2 - 2], strict=True) == \
        [((-2, -2), {0: 1}), ((Rational(-3, 2), -1), {1: 1}), ((1, 2), {1: 1})]

    f = 7*z**4 - 19*z**3 + 20*z**2 + 17*z + 20

    assert intervals(f) == []

    real_part, complex_part = intervals(f, all=True, sqf=True)

    assert real_part == []
    assert all(re(a) < re(r) < re(b) and im(
        a) < im(r) < im(b) for (a, b), r in zip(complex_part, nroots(f)))

    assert complex_part == [(Rational(-40, 7) - I*Rational(40, 7), 0),
                            (Rational(-40, 7), I*Rational(40, 7)),
                            (I*Rational(-40, 7), Rational(40, 7)),
                            (0, Rational(40, 7) + I*Rational(40, 7))]

    real_part, complex_part = intervals(f, all=True, sqf=True, eps=Rational(1, 10))

    assert real_part == []
    assert all(re(a) < re(r) < re(b) and im(
        a) < im(r) < im(b) for (a, b), r in zip(complex_part, nroots(f)))

    raises(ValueError, lambda: intervals(x**2 - 2, eps=10**-100000))
    raises(ValueError, lambda: Poly(x**2 - 2).intervals(eps=10**-100000))
    raises(
        ValueError, lambda: intervals([x**2 - 2, x**2 - 3], eps=10**-100000))


def test_refine_root():
    f = Poly(x**2 - 2)

    assert f.refine_root(1, 2, steps=0) == (1, 2)
    assert f.refine_root(-2, -1, steps=0) == (-2, -1)

    assert f.refine_root(1, 2, steps=None) == (1, Rational(3, 2))
    assert f.refine_root(-2, -1, steps=None) == (Rational(-3, 2), -1)

    assert f.refine_root(1, 2, steps=1) == (1, Rational(3, 2))
    assert f.refine_root(-2, -1, steps=1) == (Rational(-3, 2), -1)

    assert f.refine_root(1, 2, steps=1, fast=True) == (1, Rational(3, 2))
    assert f.refine_root(-2, -1, steps=1, fast=True) == (Rational(-3, 2), -1)

    assert f.refine_root(1, 2, eps=Rational(1, 100)) == (Rational(24, 17), Rational(17, 12))
    assert f.refine_root(1, 2, eps=1e-2) == (Rational(24, 17), Rational(17, 12))

    raises(PolynomialError, lambda: (f**2).refine_root(1, 2, check_sqf=True))

    raises(RefinementFailed, lambda: (f**2).refine_root(1, 2))
    raises(RefinementFailed, lambda: (f**2).refine_root(2, 3))

    f = x**2 - 2

    assert refine_root(f, 1, 2, steps=1) == (1, Rational(3, 2))
    assert refine_root(f, -2, -1, steps=1) == (Rational(-3, 2), -1)

    assert refine_root(f, 1, 2, steps=1, fast=True) == (1, Rational(3, 2))
    assert refine_root(f, -2, -1, steps=1, fast=True) == (Rational(-3, 2), -1)

    assert refine_root(f, 1, 2, eps=Rational(1, 100)) == (Rational(24, 17), Rational(17, 12))
    assert refine_root(f, 1, 2, eps=1e-2) == (Rational(24, 17), Rational(17, 12))

    raises(PolynomialError, lambda: refine_root(1, 7, 8, eps=Rational(1, 100)))

    raises(ValueError, lambda: Poly(f).refine_root(1, 2, eps=10**-100000))
    raises(ValueError, lambda: refine_root(f, 1, 2, eps=10**-100000))


def test_count_roots():
    assert count_roots(x**2 - 2) == 2

    assert count_roots(x**2 - 2, inf=-oo) == 2
    assert count_roots(x**2 - 2, sup=+oo) == 2
    assert count_roots(x**2 - 2, inf=-oo, sup=+oo) == 2

    assert count_roots(x**2 - 2, inf=-2) == 2
    assert count_roots(x**2 - 2, inf=-1) == 1

    assert count_roots(x**2 - 2, sup=1) == 1
    assert count_roots(x**2 - 2, sup=2) == 2

    assert count_roots(x**2 - 2, inf=-1, sup=1) == 0
    assert count_roots(x**2 - 2, inf=-2, sup=2) == 2

    assert count_roots(x**2 - 2, inf=-1, sup=1) == 0
    assert count_roots(x**2 - 2, inf=-2, sup=2) == 2

    assert count_roots(x**2 + 2) == 0
    assert count_roots(x**2 + 2, inf=-2*I) == 2
    assert count_roots(x**2 + 2, sup=+2*I) == 2
    assert count_roots(x**2 + 2, inf=-2*I, sup=+2*I) == 2

    assert count_roots(x**2 + 2, inf=0) == 0
    assert count_roots(x**2 + 2, sup=0) == 0

    assert count_roots(x**2 + 2, inf=-I) == 1
    assert count_roots(x**2 + 2, sup=+I) == 1

    assert count_roots(x**2 + 2, inf=+I/2, sup=+I) == 0
    assert count_roots(x**2 + 2, inf=-I, sup=-I/2) == 0

    raises(PolynomialError, lambda: count_roots(1))


def test_Poly_root():
    f = Poly(2*x**3 - 7*x**2 + 4*x + 4)

    assert f.root(0) == Rational(-1, 2)
    assert f.root(1) == 2
    assert f.root(2) == 2
    raises(IndexError, lambda: f.root(3))

    assert Poly(x**5 + x + 1).root(0) == rootof(x**3 - x**2 + 1, 0)


def test_real_roots():
    assert real_roots(x) == [0]
    assert real_roots(x, multiple=False) == [(0, 1)]

    assert real_roots(x**3) == [0, 0, 0]
    assert real_roots(x**3, multiple=False) == [(0, 3)]

    assert real_roots(x*(x**3 + x + 3)) == [rootof(x**3 + x + 3, 0), 0]
    assert real_roots(x*(x**3 + x + 3), multiple=False) == [(rootof(
        x**3 + x + 3, 0), 1), (0, 1)]

    assert real_roots(
        x**3*(x**3 + x + 3)) == [rootof(x**3 + x + 3, 0), 0, 0, 0]
    assert real_roots(x**3*(x**3 + x + 3), multiple=False) == [(rootof(
        x**3 + x + 3, 0), 1), (0, 3)]

    f = 2*x**3 - 7*x**2 + 4*x + 4
    g = x**3 + x + 1

    assert Poly(f).real_roots() == [Rational(-1, 2), 2, 2]
    assert Poly(g).real_roots() == [rootof(g, 0)]


def test_all_roots():
    f = 2*x**3 - 7*x**2 + 4*x + 4
    g = x**3 + x + 1

    assert Poly(f).all_roots() == [Rational(-1, 2), 2, 2]
    assert Poly(g).all_roots() == [rootof(g, 0), rootof(g, 1), rootof(g, 2)]


def test_nroots():
    assert Poly(0, x).nroots() == []
    assert Poly(1, x).nroots() == []

    assert Poly(x**2 - 1, x).nroots() == [-1.0, 1.0]
    assert Poly(x**2 + 1, x).nroots() == [-1.0*I, 1.0*I]

    roots = Poly(x**2 - 1, x).nroots()
    assert roots == [-1.0, 1.0]

    roots = Poly(x**2 + 1, x).nroots()
    assert roots == [-1.0*I, 1.0*I]

    roots = Poly(x**2/3 - Rational(1, 3), x).nroots()
    assert roots == [-1.0, 1.0]

    roots = Poly(x**2/3 + Rational(1, 3), x).nroots()
    assert roots == [-1.0*I, 1.0*I]

    assert Poly(x**2 + 2*I, x).nroots() == [-1.0 + 1.0*I, 1.0 - 1.0*I]
    assert Poly(
        x**2 + 2*I, x, extension=I).nroots() == [-1.0 + 1.0*I, 1.0 - 1.0*I]

    assert Poly(0.2*x + 0.1).nroots() == [-0.5]

    roots = nroots(x**5 + x + 1, n=5)
    eps = Float("1e-5")

    assert re(roots[0]).epsilon_eq(-0.75487, eps) is S.true
    assert im(roots[0]) == 0.0
    assert re(roots[1]) == -0.5
    assert im(roots[1]).epsilon_eq(-0.86602, eps) is S.true
    assert re(roots[2]) == -0.5
    assert im(roots[2]).epsilon_eq(+0.86602, eps) is S.true
    assert re(roots[3]).epsilon_eq(+0.87743, eps) is S.true
    assert im(roots[3]).epsilon_eq(-0.74486, eps) is S.true
    assert re(roots[4]).epsilon_eq(+0.87743, eps) is S.true
    assert im(roots[4]).epsilon_eq(+0.74486, eps) is S.true

    eps = Float("1e-6")

    assert re(roots[0]).epsilon_eq(-0.75487, eps) is S.false
    assert im(roots[0]) == 0.0
    assert re(roots[1]) == -0.5
    assert im(roots[1]).epsilon_eq(-0.86602, eps) is S.false
    assert re(roots[2]) == -0.5
    assert im(roots[2]).epsilon_eq(+0.86602, eps) is S.false
    assert re(roots[3]).epsilon_eq(+0.87743, eps) is S.false
    assert im(roots[3]).epsilon_eq(-0.74486, eps) is S.false
    assert re(roots[4]).epsilon_eq(+0.87743, eps) is S.false
    assert im(roots[4]).epsilon_eq(+0.74486, eps) is S.false

    raises(DomainError, lambda: Poly(x + y, x).nroots())
    raises(MultivariatePolynomialError, lambda: Poly(x + y).nroots())

    assert nroots(x**2 - 1) == [-1.0, 1.0]

    roots = nroots(x**2 - 1)
    assert roots == [-1.0, 1.0]

    assert nroots(x + I) == [-1.0*I]
    assert nroots(x + 2*I) == [-2.0*I]

    raises(PolynomialError, lambda: nroots(0))

    # issue 8296
    f = Poly(x**4 - 1)
    assert f.nroots(2) == [w.n(2) for w in f.all_roots()]

    assert str(Poly(x**16 + 32*x**14 + 508*x**12 + 5440*x**10 +
        39510*x**8 + 204320*x**6 + 755548*x**4 + 1434496*x**2 +
        877969).nroots(2)) == ('[-1.7 - 1.9*I, -1.7 + 1.9*I, -1.7 '
        '- 2.5*I, -1.7 + 2.5*I, -1.0*I, 1.0*I, -1.7*I, 1.7*I, -2.8*I, '
        '2.8*I, -3.4*I, 3.4*I, 1.7 - 1.9*I, 1.7 + 1.9*I, 1.7 - 2.5*I, '
        '1.7 + 2.5*I]')


def test_ground_roots():
    f = x**6 - 4*x**4 + 4*x**3 - x**2

    assert Poly(f).ground_roots() == {S.One: 2, S.Zero: 2}
    assert ground_roots(f) == {S.One: 2, S.Zero: 2}


def test_nth_power_roots_poly():
    f = x**4 - x**2 + 1

    f_2 = (x**2 - x + 1)**2
    f_3 = (x**2 + 1)**2
    f_4 = (x**2 + x + 1)**2
    f_12 = (x - 1)**4

    assert nth_power_roots_poly(f, 1) == f

    raises(ValueError, lambda: nth_power_roots_poly(f, 0))
    raises(ValueError, lambda: nth_power_roots_poly(f, x))

    assert factor(nth_power_roots_poly(f, 2)) == f_2
    assert factor(nth_power_roots_poly(f, 3)) == f_3
    assert factor(nth_power_roots_poly(f, 4)) == f_4
    assert factor(nth_power_roots_poly(f, 12)) == f_12

    raises(MultivariatePolynomialError, lambda: nth_power_roots_poly(
        x + y, 2, x, y))

def test_torational_factor_list():
    p = expand(((x**2-1)*(x-2)).subs({x:x*(1 + sqrt(2))}))
    assert _torational_factor_list(p, x) == (-2, [
        (-x*(1 + sqrt(2))/2 + 1, 1),
        (-x*(1 + sqrt(2)) - 1, 1),
        (-x*(1 + sqrt(2)) + 1, 1)])


    p = expand(((x**2-1)*(x-2)).subs({x:x*(1 + 2**Rational(1, 4))}))
    assert _torational_factor_list(p, x) is None

def test_cancel():
    assert cancel(0) == 0
    assert cancel(7) == 7
    assert cancel(x) == x

    assert cancel(oo) is oo

    assert cancel((2, 3)) == (1, 2, 3)

    assert cancel((1, 0), x) == (1, 1, 0)
    assert cancel((0, 1), x) == (1, 0, 1)

    f, g, p, q = 4*x**2 - 4, 2*x - 2, 2*x + 2, 1
    F, G, P, Q = [ Poly(u, x) for u in (f, g, p, q) ]

    assert F.cancel(G) == (1, P, Q)
    assert cancel((f, g)) == (1, p, q)
    assert cancel((f, g), x) == (1, p, q)
    assert cancel((f, g), (x,)) == (1, p, q)
    assert cancel((F, G)) == (1, P, Q)
    assert cancel((f, g), polys=True) == (1, P, Q)
    assert cancel((F, G), polys=False) == (1, p, q)

    f = (x**2 - 2)/(x + sqrt(2))

    assert cancel(f) == f
    assert cancel(f, greedy=False) == x - sqrt(2)

    f = (x**2 - 2)/(x - sqrt(2))

    assert cancel(f) == f
    assert cancel(f, greedy=False) == x + sqrt(2)

    assert cancel((x**2/4 - 1, x/2 - 1)) == (1, x + 2, 2)
    # assert cancel((x**2/4 - 1, x/2 - 1)) == (S.Half, x + 2, 1)

    assert cancel((x**2 - y)/(x - y)) == 1/(x - y)*(x**2 - y)

    assert cancel((x**2 - y**2)/(x - y), x) == x + y
    assert cancel((x**2 - y**2)/(x - y), y) == x + y
    assert cancel((x**2 - y**2)/(x - y)) == x + y

    assert cancel((x**3 - 1)/(x**2 - 1)) == (x**2 + x + 1)/(x + 1)
    assert cancel((x**3/2 - S.Half)/(x**2 - 1)) == (x**2 + x + 1)/(2*x + 2)

    assert cancel((exp(2*x) + 2*exp(x) + 1)/(exp(x) + 1)) == exp(x) + 1

    f = Poly(x**2 - a**2, x)
    g = Poly(x - a, x)

    F = Poly(x + a, x, domain='ZZ[a]')
    G = Poly(1, x, domain='ZZ[a]')

    assert cancel((f, g)) == (1, F, G)

    f = x**3 + (sqrt(2) - 2)*x**2 - (2*sqrt(2) + 3)*x - 3*sqrt(2)
    g = x**2 - 2

    assert cancel((f, g), extension=True) == (1, x**2 - 2*x - 3, x - sqrt(2))

    f = Poly(-2*x + 3, x)
    g = Poly(-x**9 + x**8 + x**6 - x**5 + 2*x**2 - 3*x + 1, x)

    assert cancel((f, g)) == (1, -f, -g)

    f = Poly(y, y, domain='ZZ(x)')
    g = Poly(1, y, domain='ZZ[x]')

    assert f.cancel(
        g) == (1, Poly(y, y, domain='ZZ(x)'), Poly(1, y, domain='ZZ(x)'))
    assert f.cancel(g, include=True) == (
        Poly(y, y, domain='ZZ(x)'), Poly(1, y, domain='ZZ(x)'))

    f = Poly(5*x*y + x, y, domain='ZZ(x)')
    g = Poly(2*x**2*y, y, domain='ZZ(x)')

    assert f.cancel(g, include=True) == (
        Poly(5*y + 1, y, domain='ZZ(x)'), Poly(2*x*y, y, domain='ZZ(x)'))

    f = -(-2*x - 4*y + 0.005*(z - y)**2)/((z - y)*(-z + y + 2))
    assert cancel(f).is_Mul == True

    P = tanh(x - 3.0)
    Q = tanh(x + 3.0)
    f = ((-2*P**2 + 2)*(-P**2 + 1)*Q**2/2 + (-2*P**2 + 2)*(-2*Q**2 + 2)*P*Q - (-2*P**2 + 2)*P**2*Q**2 + (-2*Q**2 + 2)*(-Q**2 + 1)*P**2/2 - (-2*Q**2 + 2)*P**2*Q**2)/(2*sqrt(P**2*Q**2 + 0.0001)) \
      + (-(-2*P**2 + 2)*P*Q**2/2 - (-2*Q**2 + 2)*P**2*Q/2)*((-2*P**2 + 2)*P*Q**2/2 + (-2*Q**2 + 2)*P**2*Q/2)/(2*(P**2*Q**2 + 0.0001)**Rational(3, 2))
    assert cancel(f).is_Mul == True

    # issue 7022
    A = Symbol('A', commutative=False)
    p1 = Piecewise((A*(x**2 - 1)/(x + 1), x > 1), ((x + 2)/(x**2 + 2*x), True))
    p2 = Piecewise((A*(x - 1), x > 1), (1/x, True))
    assert cancel(p1) == p2
    assert cancel(2*p1) == 2*p2
    assert cancel(1 + p1) == 1 + p2
    assert cancel((x**2 - 1)/(x + 1)*p1) == (x - 1)*p2
    assert cancel((x**2 - 1)/(x + 1) + p1) == (x - 1) + p2
    p3 = Piecewise(((x**2 - 1)/(x + 1), x > 1), ((x + 2)/(x**2 + 2*x), True))
    p4 = Piecewise(((x - 1), x > 1), (1/x, True))
    assert cancel(p3) == p4
    assert cancel(2*p3) == 2*p4
    assert cancel(1 + p3) == 1 + p4
    assert cancel((x**2 - 1)/(x + 1)*p3) == (x - 1)*p4
    assert cancel((x**2 - 1)/(x + 1) + p3) == (x - 1) + p4

    # issue 9363
    M = MatrixSymbol('M', 5, 5)
    assert cancel(M[0,0] + 7) == M[0,0] + 7
    expr = sin(M[1, 4] + M[2, 1] * 5 * M[4, 0]) - 5 * M[1, 2] / z
    assert cancel(expr) == (z*sin(M[1, 4] + M[2, 1] * 5 * M[4, 0]) - 5 * M[1, 2]) / z

    assert cancel((x**2 + 1)/(x - I)) == x + I


def test_reduced():
    f = 2*x**4 + y**2 - x**2 + y**3
    G = [x**3 - x, y**3 - y]

    Q = [2*x, 1]
    r = x**2 + y**2 + y

    assert reduced(f, G) == (Q, r)
    assert reduced(f, G, x, y) == (Q, r)

    H = groebner(G)

    assert H.reduce(f) == (Q, r)

    Q = [Poly(2*x, x, y), Poly(1, x, y)]
    r = Poly(x**2 + y**2 + y, x, y)

    assert _strict_eq(reduced(f, G, polys=True), (Q, r))
    assert _strict_eq(reduced(f, G, x, y, polys=True), (Q, r))

    H = groebner(G, polys=True)

    assert _strict_eq(H.reduce(f), (Q, r))

    f = 2*x**3 + y**3 + 3*y
    G = groebner([x**2 + y**2 - 1, x*y - 2])

    Q = [x**2 - x*y**3/2 + x*y/2 + y**6/4 - y**4/2 + y**2/4, -y**5/4 + y**3/2 + y*Rational(3, 4)]
    r = 0

    assert reduced(f, G) == (Q, r)
    assert G.reduce(f) == (Q, r)

    assert reduced(f, G, auto=False)[1] != 0
    assert G.reduce(f, auto=False)[1] != 0

    assert G.contains(f) is True
    assert G.contains(f + 1) is False

    assert reduced(1, [1], x) == ([1], 0)
    raises(ComputationFailed, lambda: reduced(1, [1]))


def test_groebner():
    assert groebner([], x, y, z) == []

    assert groebner([x**2 + 1, y**4*x + x**3], x, y, order='lex') == [1 + x**2, -1 + y**4]
    assert groebner([x**2 + 1, y**4*x + x**3, x*y*z**3], x, y, z, order='grevlex') == [-1 + y**4, z**3, 1 + x**2]

    assert groebner([x**2 + 1, y**4*x + x**3], x, y, order='lex', polys=True) == \
        [Poly(1 + x**2, x, y), Poly(-1 + y**4, x, y)]
    assert groebner([x**2 + 1, y**4*x + x**3, x*y*z**3], x, y, z, order='grevlex', polys=True) == \
        [Poly(-1 + y**4, x, y, z), Poly(z**3, x, y, z), Poly(1 + x**2, x, y, z)]

    assert groebner([x**3 - 1, x**2 - 1]) == [x - 1]
    assert groebner([Eq(x**3, 1), Eq(x**2, 1)]) == [x - 1]

    F = [3*x**2 + y*z - 5*x - 1, 2*x + 3*x*y + y**2, x - 3*y + x*z - 2*z**2]
    f = z**9 - x**2*y**3 - 3*x*y**2*z + 11*y*z**2 + x**2*z**2 - 5

    G = groebner(F, x, y, z, modulus=7, symmetric=False)

    assert G == [1 + x + y + 3*z + 2*z**2 + 2*z**3 + 6*z**4 + z**5,
                 1 + 3*y + y**2 + 6*z**2 + 3*z**3 + 3*z**4 + 3*z**5 + 4*z**6,
                 1 + 4*y + 4*z + y*z + 4*z**3 + z**4 + z**6,
                 6 + 6*z + z**2 + 4*z**3 + 3*z**4 + 6*z**5 + 3*z**6 + z**7]

    Q, r = reduced(f, G, x, y, z, modulus=7, symmetric=False, polys=True)

    assert sum([ q*g for q, g in zip(Q, G.polys)], r) == Poly(f, modulus=7)

    F = [x*y - 2*y, 2*y**2 - x**2]

    assert groebner(F, x, y, order='grevlex') == \
        [y**3 - 2*y, x**2 - 2*y**2, x*y - 2*y]
    assert groebner(F, y, x, order='grevlex') == \
        [x**3 - 2*x**2, -x**2 + 2*y**2, x*y - 2*y]
    assert groebner(F, order='grevlex', field=True) == \
        [y**3 - 2*y, x**2 - 2*y**2, x*y - 2*y]

    assert groebner([1], x) == [1]

    assert groebner([x**2 + 2.0*y], x, y) == [1.0*x**2 + 2.0*y]
    raises(ComputationFailed, lambda: groebner([1]))

    assert groebner([x**2 - 1, x**3 + 1], method='buchberger') == [x + 1]
    assert groebner([x**2 - 1, x**3 + 1], method='f5b') == [x + 1]

    raises(ValueError, lambda: groebner([x, y], method='unknown'))


def test_fglm():
    F = [a + b + c + d, a*b + a*d + b*c + b*d, a*b*c + a*b*d + a*c*d + b*c*d, a*b*c*d - 1]
    G = groebner(F, a, b, c, d, order=grlex)

    B = [
        4*a + 3*d**9 - 4*d**5 - 3*d,
        4*b + 4*c - 3*d**9 + 4*d**5 + 7*d,
        4*c**2 + 3*d**10 - 4*d**6 - 3*d**2,
        4*c*d**4 + 4*c - d**9 + 4*d**5 + 5*d,
        d**12 - d**8 - d**4 + 1,
    ]

    assert groebner(F, a, b, c, d, order=lex) == B
    assert G.fglm(lex) == B

    F = [9*x**8 + 36*x**7 - 32*x**6 - 252*x**5 - 78*x**4 + 468*x**3 + 288*x**2 - 108*x + 9,
        -72*t*x**7 - 252*t*x**6 + 192*t*x**5 + 1260*t*x**4 + 312*t*x**3 - 404*t*x**2 - 576*t*x + \
        108*t - 72*x**7 - 256*x**6 + 192*x**5 + 1280*x**4 + 312*x**3 - 576*x + 96]
    G = groebner(F, t, x, order=grlex)

    B = [
        203577793572507451707*t + 627982239411707112*x**7 - 666924143779443762*x**6 - \
        10874593056632447619*x**5 + 5119998792707079562*x**4 + 72917161949456066376*x**3 + \
        20362663855832380362*x**2 - 142079311455258371571*x + 183756699868981873194,
        9*x**8 + 36*x**7 - 32*x**6 - 252*x**5 - 78*x**4 + 468*x**3 + 288*x**2 - 108*x + 9,
    ]

    assert groebner(F, t, x, order=lex) == B
    assert G.fglm(lex) == B

    F = [x**2 - x - 3*y + 1, -2*x + y**2 + y - 1]
    G = groebner(F, x, y, order=lex)

    B = [
        x**2 - x - 3*y + 1,
        y**2 - 2*x + y - 1,
    ]

    assert groebner(F, x, y, order=grlex) == B
    assert G.fglm(grlex) == B


def test_is_zero_dimensional():
    assert is_zero_dimensional([x, y], x, y) is True
    assert is_zero_dimensional([x**3 + y**2], x, y) is False

    assert is_zero_dimensional([x, y, z], x, y, z) is True
    assert is_zero_dimensional([x, y, z], x, y, z, t) is False

    F = [x*y - z, y*z - x, x*y - y]
    assert is_zero_dimensional(F, x, y, z) is True

    F = [x**2 - 2*x*z + 5, x*y**2 + y*z**3, 3*y**2 - 8*z**2]
    assert is_zero_dimensional(F, x, y, z) is True


def test_GroebnerBasis():
    F = [x*y - 2*y, 2*y**2 - x**2]

    G = groebner(F, x, y, order='grevlex')
    H = [y**3 - 2*y, x**2 - 2*y**2, x*y - 2*y]
    P = [ Poly(h, x, y) for h in H ]

    assert groebner(F + [0], x, y, order='grevlex') == G
    assert isinstance(G, GroebnerBasis) is True

    assert len(G) == 3

    assert G[0] == H[0] and not G[0].is_Poly
    assert G[1] == H[1] and not G[1].is_Poly
    assert G[2] == H[2] and not G[2].is_Poly

    assert G[1:] == H[1:] and not any(g.is_Poly for g in G[1:])
    assert G[:2] == H[:2] and not any(g.is_Poly for g in G[1:])

    assert G.exprs == H
    assert G.polys == P
    assert G.gens == (x, y)
    assert G.domain == ZZ
    assert G.order == grevlex

    assert G == H
    assert G == tuple(H)
    assert G == P
    assert G == tuple(P)

    assert G != []

    G = groebner(F, x, y, order='grevlex', polys=True)

    assert G[0] == P[0] and G[0].is_Poly
    assert G[1] == P[1] and G[1].is_Poly
    assert G[2] == P[2] and G[2].is_Poly

    assert G[1:] == P[1:] and all(g.is_Poly for g in G[1:])
    assert G[:2] == P[:2] and all(g.is_Poly for g in G[1:])


def test_poly():
    assert poly(x) == Poly(x, x)
    assert poly(y) == Poly(y, y)

    assert poly(x + y) == Poly(x + y, x, y)
    assert poly(x + sin(x)) == Poly(x + sin(x), x, sin(x))

    assert poly(x + y, wrt=y) == Poly(x + y, y, x)
    assert poly(x + sin(x), wrt=sin(x)) == Poly(x + sin(x), sin(x), x)

    assert poly(x*y + 2*x*z**2 + 17) == Poly(x*y + 2*x*z**2 + 17, x, y, z)

    assert poly(2*(y + z)**2 - 1) == Poly(2*y**2 + 4*y*z + 2*z**2 - 1, y, z)
    assert poly(
        x*(y + z)**2 - 1) == Poly(x*y**2 + 2*x*y*z + x*z**2 - 1, x, y, z)
    assert poly(2*x*(
        y + z)**2 - 1) == Poly(2*x*y**2 + 4*x*y*z + 2*x*z**2 - 1, x, y, z)

    assert poly(2*(
        y + z)**2 - x - 1) == Poly(2*y**2 + 4*y*z + 2*z**2 - x - 1, x, y, z)
    assert poly(x*(
        y + z)**2 - x - 1) == Poly(x*y**2 + 2*x*y*z + x*z**2 - x - 1, x, y, z)
    assert poly(2*x*(y + z)**2 - x - 1) == Poly(2*x*y**2 + 4*x*y*z + 2*
                x*z**2 - x - 1, x, y, z)

    assert poly(x*y + (x + y)**2 + (x + z)**2) == \
        Poly(2*x*z + 3*x*y + y**2 + z**2 + 2*x**2, x, y, z)
    assert poly(x*y*(x + y)*(x + z)**2) == \
        Poly(x**3*y**2 + x*y**2*z**2 + y*x**2*z**2 + 2*z*x**2*
             y**2 + 2*y*z*x**3 + y*x**4, x, y, z)

    assert poly(Poly(x + y + z, y, x, z)) == Poly(x + y + z, y, x, z)

    assert poly((x + y)**2, x) == Poly(x**2 + 2*x*y + y**2, x, domain=ZZ[y])
    assert poly((x + y)**2, y) == Poly(x**2 + 2*x*y + y**2, y, domain=ZZ[x])

    assert poly(1, x) == Poly(1, x)
    raises(GeneratorsNeeded, lambda: poly(1))

    # issue 6184
    assert poly(x + y, x, y) == Poly(x + y, x, y)
    assert poly(x + y, y, x) == Poly(x + y, y, x)


def test_keep_coeff():
    u = Mul(2, x + 1, evaluate=False)
    assert _keep_coeff(S.One, x) == x
    assert _keep_coeff(S.NegativeOne, x) == -x
    assert _keep_coeff(S(1.0), x) == 1.0*x
    assert _keep_coeff(S(-1.0), x) == -1.0*x
    assert _keep_coeff(S.One, 2*x) == 2*x
    assert _keep_coeff(S(2), x/2) == x
    assert _keep_coeff(S(2), sin(x)) == 2*sin(x)
    assert _keep_coeff(S(2), x + 1) == u
    assert _keep_coeff(x, 1/x) == 1
    assert _keep_coeff(x + 1, S(2)) == u
    assert _keep_coeff(S.Half, S.One) == S.Half
    p = Pow(2, 3, evaluate=False)
    assert _keep_coeff(S(-1), p) == Mul(-1, p, evaluate=False)
    a = Add(2, p, evaluate=False)
    assert _keep_coeff(S.Half, a, clear=True
        ) == Mul(S.Half, a, evaluate=False)
    assert _keep_coeff(S.Half, a, clear=False
        ) == Add(1, Mul(S.Half, p, evaluate=False), evaluate=False)


def test_poly_matching_consistency():
    # Test for this issue:
    # https://github.com/sympy/sympy/issues/5514
    assert I * Poly(x, x) == Poly(I*x, x)
    assert Poly(x, x) * I == Poly(I*x, x)


def test_issue_5786():
    assert expand(factor(expand(
        (x - I*y)*(z - I*t)), extension=[I])) == -I*t*x - t*y + x*z - I*y*z


def test_noncommutative():
    class foo(Expr):
        is_commutative=False
    e = x/(x + x*y)
    c = 1/( 1 + y)
    assert cancel(foo(e)) == foo(c)
    assert cancel(e + foo(e)) == c + foo(c)
    assert cancel(e*foo(c)) == c*foo(c)


def test_to_rational_coeffs():
    assert to_rational_coeffs(
        Poly(x**3 + y*x**2 + sqrt(y), x, domain='EX')) is None
    # issue 21268
    assert to_rational_coeffs(
        Poly(y**3 + sqrt(2)*y**2*sin(x) + 1, y)) is None

    assert to_rational_coeffs(Poly(x, y)) is None
    assert to_rational_coeffs(Poly(sqrt(2)*y)) is None


def test_factor_terms():
    # issue 7067
    assert factor_list(x*(x + y)) == (1, [(x, 1), (x + y, 1)])
    assert sqf_list(x*(x + y)) == (1, [(x**2 + x*y, 1)])


def test_as_list():
    # issue 14496
    assert Poly(x**3 + 2, x, domain='ZZ').as_list() == [1, 0, 0, 2]
    assert Poly(x**2 + y + 1, x, y, domain='ZZ').as_list() == [[1], [], [1, 1]]
    assert Poly(x**2 + y + 1, x, y, z, domain='ZZ').as_list() == \
                                                    [[[1]], [[]], [[1], [1]]]


def test_issue_11198():
    assert factor_list(sqrt(2)*x) == (sqrt(2), [(x, 1)])
    assert factor_list(sqrt(2)*sin(x), sin(x)) == (sqrt(2), [(sin(x), 1)])


def test_Poly_precision():
    # Make sure Poly doesn't lose precision
    p = Poly(pi.evalf(100)*x)
    assert p.as_expr() == pi.evalf(100)*x


def test_issue_12400():
    # Correction of check for negative exponents
    assert poly(1/(1+sqrt(2)), x) == \
            Poly(1/(1+sqrt(2)), x , domain='EX')

def test_issue_14364():
    assert gcd(S(6)*(1 + sqrt(3))/5, S(3)*(1 + sqrt(3))/10) == Rational(3, 10) * (1 + sqrt(3))
    assert gcd(sqrt(5)*Rational(4, 7), sqrt(5)*Rational(2, 3)) == sqrt(5)*Rational(2, 21)

    assert lcm(Rational(2, 3)*sqrt(3), Rational(5, 6)*sqrt(3)) == S(10)*sqrt(3)/3
    assert lcm(3*sqrt(3), 4/sqrt(3)) == 12*sqrt(3)
    assert lcm(S(5)*(1 + 2**Rational(1, 3))/6, S(3)*(1 + 2**Rational(1, 3))/8) == Rational(15, 2) * (1 + 2**Rational(1, 3))

    assert gcd(Rational(2, 3)*sqrt(3), Rational(5, 6)/sqrt(3)) == sqrt(3)/18
    assert gcd(S(4)*sqrt(13)/7, S(3)*sqrt(13)/14) == sqrt(13)/14

    # gcd_list and lcm_list
    assert gcd([S(2)*sqrt(47)/7, S(6)*sqrt(47)/5, S(8)*sqrt(47)/5]) == sqrt(47)*Rational(2, 35)
    assert gcd([S(6)*(1 + sqrt(7))/5, S(2)*(1 + sqrt(7))/7, S(4)*(1 + sqrt(7))/13]) ==  (1 + sqrt(7))*Rational(2, 455)
    assert lcm((Rational(7, 2)/sqrt(15), Rational(5, 6)/sqrt(15), Rational(5, 8)/sqrt(15))) == Rational(35, 2)/sqrt(15)
    assert lcm([S(5)*(2 + 2**Rational(5, 7))/6, S(7)*(2 + 2**Rational(5, 7))/2, S(13)*(2 + 2**Rational(5, 7))/4]) == Rational(455, 2) * (2 + 2**Rational(5, 7))


def test_issue_15669():
    x = Symbol("x", positive=True)
    expr = (16*x**3/(-x**2 + sqrt(8*x**2 + (x**2 - 2)**2) + 2)**2 -
        2*2**Rational(4, 5)*x*(-x**2 + sqrt(8*x**2 + (x**2 - 2)**2) + 2)**Rational(3, 5) + 10*x)
    assert factor(expr, deep=True) == x*(x**2 + 2)


def test_issue_17988():
    x = Symbol('x')
    p = poly(x - 1)
    with warns_deprecated_sympy():
        M = Matrix([[poly(x + 1), poly(x + 1)]])
    with warns_deprecated_sympy():
        assert p * M == M * p == Matrix([[poly(x**2 - 1), poly(x**2 - 1)]])


def test_issue_18205():
    assert cancel((2 + I)*(3 - I)) == 7 + I
    assert cancel((2 + I)*(2 - I)) == 5


def test_issue_8695():
    p = (x**2 + 1) * (x - 1)**2 * (x - 2)**3 * (x - 3)**3
    result = (1, [(x**2 + 1, 1), (x - 1, 2), (x**2 - 5*x + 6, 3)])
    assert sqf_list(p) == result


def test_issue_19113():
    eq = sin(x)**3 - sin(x) + 1
    raises(PolynomialError, lambda: refine_root(eq, 1, 2, 1e-2))
    raises(PolynomialError, lambda: count_roots(eq, -1, 1))
    raises(PolynomialError, lambda: real_roots(eq))
    raises(PolynomialError, lambda: nroots(eq))
    raises(PolynomialError, lambda: ground_roots(eq))
    raises(PolynomialError, lambda: nth_power_roots_poly(eq, 2))


def test_issue_19360():
    f = 2*x**2 - 2*sqrt(2)*x*y + y**2
    assert factor(f, extension=sqrt(2)) == 2*(x - (sqrt(2)*y/2))**2

    f = -I*t*x - t*y + x*z - I*y*z
    assert factor(f, extension=I) == (x - I*y)*(-I*t + z)


def test_poly_copy_equals_original():
    poly = Poly(x + y, x, y, z)
    copy = poly.copy()
    assert poly == copy, (
        "Copied polynomial not equal to original.")
    assert poly.gens == copy.gens, (
        "Copied polynomial has different generators than original.")


def test_deserialized_poly_equals_original():
    poly = Poly(x + y, x, y, z)
    deserialized = pickle.loads(pickle.dumps(poly))
    assert poly == deserialized, (
        "Deserialized polynomial not equal to original.")
    assert poly.gens == deserialized.gens, (
        "Deserialized polynomial has different generators than original.")


def test_issue_20389():
    result = degree(x * (x + 1) - x ** 2 - x, x)
    assert result == -oo


def test_issue_20985():
    from sympy import symbols
    w, R = symbols('w R')
    poly = Poly(1.0 + I*w/R, w, 1/R)
    assert poly.degree() == S(1)
