from sympy import (Abs, Rational, Float, S, Symbol, symbols, cos, sin, pi, sqrt, \
                    oo, acos)
from sympy.functions.elementary.trigonometric import tan
from sympy.geometry import (Circle, Ellipse, GeometryError, Point, Point2D, \
                            Polygon, Ray, RegularPolygon, Segment, Triangle, \
                            are_similar, convex_hull, intersection, Line, Ray2D)
from sympy.testing.pytest import raises, slow, warns
from sympy.testing.randtest import verify_numerically
from sympy.geometry.polygon import rad, deg
from sympy import integrate


def feq(a, b):
    """Test if two floating point values are 'equal'."""
    t_float = Float("1.0E-10")
    return -t_float < a - b < t_float

@slow
def test_polygon():
    x = Symbol('x', real=True)
    y = Symbol('y', real=True)
    q = Symbol('q', real=True)
    u = Symbol('u', real=True)
    v = Symbol('v', real=True)
    w = Symbol('w', real=True)
    x1 = Symbol('x1', real=True)
    half = S.Half
    a, b, c = Point(0, 0), Point(2, 0), Point(3, 3)
    t = Triangle(a, b, c)
    assert Polygon(Point(0, 0)) == Point(0, 0)
    assert Polygon(a, Point(1, 0), b, c) == t
    assert Polygon(Point(1, 0), b, c, a) == t
    assert Polygon(b, c, a, Point(1, 0)) == t
    # 2 "remove folded" tests
    assert Polygon(a, Point(3, 0), b, c) == t
    assert Polygon(a, b, Point(3, -1), b, c) == t
    # remove multiple collinear points
    assert Polygon(Point(-4, 15), Point(-11, 15), Point(-15, 15),
        Point(-15, 33/5), Point(-15, -87/10), Point(-15, -15),
        Point(-42/5, -15), Point(-2, -15), Point(7, -15), Point(15, -15),
        Point(15, -3), Point(15, 10), Point(15, 15)) == \
        Polygon(Point(-15, -15), Point(15, -15), Point(15, 15), Point(-15, 15))

    p1 = Polygon(
        Point(0, 0), Point(3, -1),
        Point(6, 0), Point(4, 5),
        Point(2, 3), Point(0, 3))
    p2 = Polygon(
        Point(6, 0), Point(3, -1),
        Point(0, 0), Point(0, 3),
        Point(2, 3), Point(4, 5))
    p3 = Polygon(
        Point(0, 0), Point(3, 0),
        Point(5, 2), Point(4, 4))
    p4 = Polygon(
        Point(0, 0), Point(4, 4),
        Point(5, 2), Point(3, 0))
    p5 = Polygon(
        Point(0, 0), Point(4, 4),
        Point(0, 4))
    p6 = Polygon(
        Point(-11, 1), Point(-9, 6.6),
        Point(-4, -3), Point(-8.4, -8.7))
    p7 = Polygon(
        Point(x, y), Point(q, u),
        Point(v, w))
    p8 = Polygon(
        Point(x, y), Point(v, w),
        Point(q, u))
    p9 = Polygon(
        Point(0, 0), Point(4, 4),
        Point(3, 0), Point(5, 2))
    p10 = Polygon(
        Point(0, 2), Point(2, 2),
        Point(0, 0), Point(2, 0))
    p11 = Polygon(Point(0, 0), 1, n=3)
    p12 = Polygon(Point(0, 0), 1, 0, n=3)

    r = Ray(Point(-9, 6.6), Point(-9, 5.5))
    #
    # General polygon
    #
    assert p1 == p2
    assert len(p1.args) == 6
    assert len(p1.sides) == 6
    assert p1.perimeter == 5 + 2*sqrt(10) + sqrt(29) + sqrt(8)
    assert p1.area == 22
    assert not p1.is_convex()
    assert Polygon((-1, 1), (2, -1), (2, 1), (-1, -1), (3, 0)
        ).is_convex() is False
    # ensure convex for both CW and CCW point specification
    assert p3.is_convex()
    assert p4.is_convex()
    dict5 = p5.angles
    assert dict5[Point(0, 0)] == pi / 4
    assert dict5[Point(0, 4)] == pi / 2
    assert p5.encloses_point(Point(x, y)) is None
    assert p5.encloses_point(Point(1, 3))
    assert p5.encloses_point(Point(0, 0)) is False
    assert p5.encloses_point(Point(4, 0)) is False
    assert p1.encloses(Circle(Point(2.5, 2.5), 5)) is False
    assert p1.encloses(Ellipse(Point(2.5, 2), 5, 6)) is False
    p5.plot_interval('x') == [x, 0, 1]
    assert p5.distance(
        Polygon(Point(10, 10), Point(14, 14), Point(10, 14))) == 6 * sqrt(2)
    assert p5.distance(
        Polygon(Point(1, 8), Point(5, 8), Point(8, 12), Point(1, 12))) == 4
    with warns(UserWarning, \
               match="Polygons may intersect producing erroneous output"):
        Polygon(Point(0, 0), Point(1, 0), Point(1, 1)).distance(
                Polygon(Point(0, 0), Point(0, 1), Point(1, 1)))
    assert hash(p5) == hash(Polygon(Point(0, 0), Point(4, 4), Point(0, 4)))
    assert hash(p1) == hash(p2)
    assert hash(p7) == hash(p8)
    assert hash(p3) != hash(p9)
    assert p5 == Polygon(Point(4, 4), Point(0, 4), Point(0, 0))
    assert Polygon(Point(4, 4), Point(0, 4), Point(0, 0)) in p5
    assert p5 != Point(0, 4)
    assert Point(0, 1) in p5
    assert p5.arbitrary_point('t').subs(Symbol('t', real=True), 0) == \
        Point(0, 0)
    raises(ValueError, lambda: Polygon(
        Point(x, 0), Point(0, y), Point(x, y)).arbitrary_point('x'))
    assert p6.intersection(r) == [Point(-9, Rational(-84, 13)), Point(-9, Rational(33, 5))]
    assert p10.area == 0
    assert p11 == RegularPolygon(Point(0, 0), 1, 3, 0)
    assert p11 == p12
    assert p11.vertices[0] == Point(1, 0)
    assert p11.args[0] == Point(0, 0)
    p11.spin(pi/2)
    assert p11.vertices[0] == Point(0, 1)
    #
    # Regular polygon
    #
    p1 = RegularPolygon(Point(0, 0), 10, 5)
    p2 = RegularPolygon(Point(0, 0), 5, 5)
    raises(GeometryError, lambda: RegularPolygon(Point(0, 0), Point(0,
           1), Point(1, 1)))
    raises(GeometryError, lambda: RegularPolygon(Point(0, 0), 1, 2))
    raises(ValueError, lambda: RegularPolygon(Point(0, 0), 1, 2.5))

    assert p1 != p2
    assert p1.interior_angle == pi*Rational(3, 5)
    assert p1.exterior_angle == pi*Rational(2, 5)
    assert p2.apothem == 5*cos(pi/5)
    assert p2.circumcenter == p1.circumcenter == Point(0, 0)
    assert p1.circumradius == p1.radius == 10
    assert p2.circumcircle == Circle(Point(0, 0), 5)
    assert p2.incircle == Circle(Point(0, 0), p2.apothem)
    assert p2.inradius == p2.apothem == (5 * (1 + sqrt(5)) / 4)
    p2.spin(pi / 10)
    dict1 = p2.angles
    assert dict1[Point(0, 5)] == 3 * pi / 5
    assert p1.is_convex()
    assert p1.rotation == 0
    assert p1.encloses_point(Point(0, 0))
    assert p1.encloses_point(Point(11, 0)) is False
    assert p2.encloses_point(Point(0, 4.9))
    p1.spin(pi/3)
    assert p1.rotation == pi/3
    assert p1.vertices[0] == Point(5, 5*sqrt(3))
    for var in p1.args:
        if isinstance(var, Point):
            assert var == Point(0, 0)
        else:
            assert var == 5 or var == 10 or var == pi / 3
    assert p1 != Point(0, 0)
    assert p1 != p5

    # while spin works in place (notice that rotation is 2pi/3 below)
    # rotate returns a new object
    p1_old = p1
    assert p1.rotate(pi/3) == RegularPolygon(Point(0, 0), 10, 5, pi*Rational(2, 3))
    assert p1 == p1_old

    assert p1.area == (-250*sqrt(5) + 1250)/(4*tan(pi/5))
    assert p1.length == 20*sqrt(-sqrt(5)/8 + Rational(5, 8))
    assert p1.scale(2, 2) == \
        RegularPolygon(p1.center, p1.radius*2, p1._n, p1.rotation)
    assert RegularPolygon((0, 0), 1, 4).scale(2, 3) == \
        Polygon(Point(2, 0), Point(0, 3), Point(-2, 0), Point(0, -3))

    assert repr(p1) == str(p1)

    #
    # Angles
    #
    angles = p4.angles
    assert feq(angles[Point(0, 0)].evalf(), Float("0.7853981633974483"))
    assert feq(angles[Point(4, 4)].evalf(), Float("1.2490457723982544"))
    assert feq(angles[Point(5, 2)].evalf(), Float("1.8925468811915388"))
    assert feq(angles[Point(3, 0)].evalf(), Float("2.3561944901923449"))

    angles = p3.angles
    assert feq(angles[Point(0, 0)].evalf(), Float("0.7853981633974483"))
    assert feq(angles[Point(4, 4)].evalf(), Float("1.2490457723982544"))
    assert feq(angles[Point(5, 2)].evalf(), Float("1.8925468811915388"))
    assert feq(angles[Point(3, 0)].evalf(), Float("2.3561944901923449"))

    #
    # Triangle
    #
    p1 = Point(0, 0)
    p2 = Point(5, 0)
    p3 = Point(0, 5)
    t1 = Triangle(p1, p2, p3)
    t2 = Triangle(p1, p2, Point(Rational(5, 2), sqrt(Rational(75, 4))))
    t3 = Triangle(p1, Point(x1, 0), Point(0, x1))
    s1 = t1.sides
    assert Triangle(p1, p2, p1) == Polygon(p1, p2, p1) == Segment(p1, p2)
    raises(GeometryError, lambda: Triangle(Point(0, 0)))

    # Basic stuff
    assert Triangle(p1, p1, p1) == p1
    assert Triangle(p2, p2*2, p2*3) == Segment(p2, p2*3)
    assert t1.area == Rational(25, 2)
    assert t1.is_right()
    assert t2.is_right() is False
    assert t3.is_right()
    assert p1 in t1
    assert t1.sides[0] in t1
    assert Segment((0, 0), (1, 0)) in t1
    assert Point(5, 5) not in t2
    assert t1.is_convex()
    assert feq(t1.angles[p1].evalf(), pi.evalf()/2)

    assert t1.is_equilateral() is False
    assert t2.is_equilateral()
    assert t3.is_equilateral() is False
    assert are_similar(t1, t2) is False
    assert are_similar(t1, t3)
    assert are_similar(t2, t3) is False
    assert t1.is_similar(Point(0, 0)) is False
    assert t1.is_similar(t2) is False

    # Bisectors
    bisectors = t1.bisectors()
    assert bisectors[p1] == Segment(
        p1, Point(Rational(5, 2), Rational(5, 2)))
    assert t2.bisectors()[p2] == Segment(
        Point(5, 0), Point(Rational(5, 4), 5*sqrt(3)/4))
    p4 = Point(0, x1)
    assert t3.bisectors()[p4] == Segment(p4, Point(x1*(sqrt(2) - 1), 0))
    ic = (250 - 125*sqrt(2))/50
    assert t1.incenter == Point(ic, ic)

    # Inradius
    assert t1.inradius == t1.incircle.radius == 5 - 5*sqrt(2)/2
    assert t2.inradius == t2.incircle.radius == 5*sqrt(3)/6
    assert t3.inradius == t3.incircle.radius == x1**2/((2 + sqrt(2))*Abs(x1))

    # Exradius
    assert t1.exradii[t1.sides[2]] == 5*sqrt(2)/2

    # Excenters
    assert t1.excenters[t1.sides[2]] == Point2D(25*sqrt(2), -5*sqrt(2)/2)

    # Circumcircle
    assert t1.circumcircle.center == Point(2.5, 2.5)

    # Medians + Centroid
    m = t1.medians
    assert t1.centroid == Point(Rational(5, 3), Rational(5, 3))
    assert m[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2)))
    assert t3.medians[p1] == Segment(p1, Point(x1/2, x1/2))
    assert intersection(m[p1], m[p2], m[p3]) == [t1.centroid]
    assert t1.medial == Triangle(Point(2.5, 0), Point(0, 2.5), Point(2.5, 2.5))

    # Nine-point circle
    assert t1.nine_point_circle == Circle(Point(2.5, 0),
                                          Point(0, 2.5), Point(2.5, 2.5))
    assert t1.nine_point_circle == Circle(Point(0, 0),
                                          Point(0, 2.5), Point(2.5, 2.5))

    # Perpendicular
    altitudes = t1.altitudes
    assert altitudes[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2)))
    assert altitudes[p2].equals(s1[0])
    assert altitudes[p3] == s1[2]
    assert t1.orthocenter == p1
    t = S('''Triangle(
    Point(100080156402737/5000000000000, 79782624633431/500000000000),
    Point(39223884078253/2000000000000, 156345163124289/1000000000000),
    Point(31241359188437/1250000000000, 338338270939941/1000000000000000))''')
    assert t.orthocenter == S('''Point(-780660869050599840216997'''
    '''79471538701955848721853/80368430960602242240789074233100000000000000,'''
    '''20151573611150265741278060334545897615974257/16073686192120448448157'''
    '''8148466200000000000)''')

    # Ensure
    assert len(intersection(*bisectors.values())) == 1
    assert len(intersection(*altitudes.values())) == 1
    assert len(intersection(*m.values())) == 1

    # Distance
    p1 = Polygon(
        Point(0, 0), Point(1, 0),
        Point(1, 1), Point(0, 1))
    p2 = Polygon(
        Point(0, Rational(5)/4), Point(1, Rational(5)/4),
        Point(1, Rational(9)/4), Point(0, Rational(9)/4))
    p3 = Polygon(
        Point(1, 2), Point(2, 2),
        Point(2, 1))
    p4 = Polygon(
        Point(1, 1), Point(Rational(6)/5, 1),
        Point(1, Rational(6)/5))
    pt1 = Point(half, half)
    pt2 = Point(1, 1)

    '''Polygon to Point'''
    assert p1.distance(pt1) == half
    assert p1.distance(pt2) == 0
    assert p2.distance(pt1) == Rational(3)/4
    assert p3.distance(pt2) == sqrt(2)/2

    '''Polygon to Polygon'''
    # p1.distance(p2) emits a warning
    with warns(UserWarning, \
               match="Polygons may intersect producing erroneous output"):
        assert p1.distance(p2) == half/2

    assert p1.distance(p3) == sqrt(2)/2

    # p3.distance(p4) emits a warning
    with warns(UserWarning, \
               match="Polygons may intersect producing erroneous output"):
        assert p3.distance(p4) == (sqrt(2)/2 - sqrt(Rational(2)/25)/2)


def test_convex_hull():
    p = [Point(-5, -1), Point(-2, 1), Point(-2, -1), Point(-1, -3), \
         Point(0, 0), Point(1, 1), Point(2, 2), Point(2, -1), Point(3, 1), \
         Point(4, -1), Point(6, 2)]
    ch = Polygon(p[0], p[3], p[9], p[10], p[6], p[1])
    #test handling of duplicate points
    p.append(p[3])

    #more than 3 collinear points
    another_p = [Point(-45, -85), Point(-45, 85), Point(-45, 26), \
                 Point(-45, -24)]
    ch2 = Segment(another_p[0], another_p[1])

    assert convex_hull(*another_p) == ch2
    assert convex_hull(*p) == ch
    assert convex_hull(p[0]) == p[0]
    assert convex_hull(p[0], p[1]) == Segment(p[0], p[1])

    # no unique points
    assert convex_hull(*[p[-1]]*3) == p[-1]

    # collection of items
    assert convex_hull(*[Point(0, 0), \
                        Segment(Point(1, 0), Point(1, 1)), \
                        RegularPolygon(Point(2, 0), 2, 4)]) == \
        Polygon(Point(0, 0), Point(2, -2), Point(4, 0), Point(2, 2))


def test_encloses():
    # square with a dimpled left side
    s = Polygon(Point(0, 0), Point(1, 0), Point(1, 1), Point(0, 1), \
        Point(S.Half, S.Half))
    # the following is True if the polygon isn't treated as closing on itself
    assert s.encloses(Point(0, S.Half)) is False
    assert s.encloses(Point(S.Half, S.Half)) is False  # it's a vertex
    assert s.encloses(Point(Rational(3, 4), S.Half)) is True


def test_triangle_kwargs():
    assert Triangle(sss=(3, 4, 5)) == \
        Triangle(Point(0, 0), Point(3, 0), Point(3, 4))
    assert Triangle(asa=(30, 2, 30)) == \
        Triangle(Point(0, 0), Point(2, 0), Point(1, sqrt(3)/3))
    assert Triangle(sas=(1, 45, 2)) == \
        Triangle(Point(0, 0), Point(2, 0), Point(sqrt(2)/2, sqrt(2)/2))
    assert Triangle(sss=(1, 2, 5)) is None
    assert deg(rad(180)) == 180


def test_transform():
    pts = [Point(0, 0), Point(S.Half, Rational(1, 4)), Point(1, 1)]
    pts_out = [Point(-4, -10), Point(-3, Rational(-37, 4)), Point(-2, -7)]
    assert Triangle(*pts).scale(2, 3, (4, 5)) == Triangle(*pts_out)
    assert RegularPolygon((0, 0), 1, 4).scale(2, 3, (4, 5)) == \
        Polygon(Point(-2, -10), Point(-4, -7), Point(-6, -10), Point(-4, -13))
    # Checks for symmetric scaling
    assert RegularPolygon((0, 0), 1, 4).scale(2, 2) == \
        RegularPolygon(Point2D(0, 0), 2, 4, 0)

def test_reflect():
    x = Symbol('x', real=True)
    y = Symbol('y', real=True)
    b = Symbol('b')
    m = Symbol('m')
    l = Line((0, b), slope=m)
    p = Point(x, y)
    r = p.reflect(l)
    dp = l.perpendicular_segment(p).length
    dr = l.perpendicular_segment(r).length

    assert verify_numerically(dp, dr)

    assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((3, 0), slope=oo)) \
        == Triangle(Point(5, 0), Point(4, 0), Point(4, 2))
    assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((0, 3), slope=oo)) \
        == Triangle(Point(-1, 0), Point(-2, 0), Point(-2, 2))
    assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((0, 3), slope=0)) \
        == Triangle(Point(1, 6), Point(2, 6), Point(2, 4))
    assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((3, 0), slope=0)) \
        == Triangle(Point(1, 0), Point(2, 0), Point(2, -2))

def test_bisectors():
    p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
    p = Polygon(Point(0, 0), Point(2, 0), Point(1, 1), Point(0, 3))
    q = Polygon(Point(1, 0), Point(2, 0), Point(3, 3), Point(-1, 5))
    poly = Polygon(Point(3, 4), Point(0, 0), Point(8, 7), Point(-1, 1), Point(19, -19))
    t = Triangle(p1, p2, p3)
    assert t.bisectors()[p2] == Segment(Point(1, 0), Point(0, sqrt(2) - 1))
    assert p.bisectors()[Point2D(0, 3)] == Ray2D(Point2D(0, 3), \
        Point2D(sin(acos(2*sqrt(5)/5)/2), 3 - cos(acos(2*sqrt(5)/5)/2)))
    assert q.bisectors()[Point2D(-1, 5)] == \
        Ray2D(Point2D(-1, 5), Point2D(-1 + sqrt(29)*(5*sin(acos(9*sqrt(145)/145)/2) + \
        2*cos(acos(9*sqrt(145)/145)/2))/29, sqrt(29)*(-5*cos(acos(9*sqrt(145)/145)/2) + \
        2*sin(acos(9*sqrt(145)/145)/2))/29 + 5))
    assert poly.bisectors()[Point2D(-1, 1)] == Ray2D(Point2D(-1, 1), \
        Point2D(-1 + sin(acos(sqrt(26)/26)/2 + pi/4), 1 - sin(-acos(sqrt(26)/26)/2 + pi/4)))

def test_incenter():
    assert Triangle(Point(0, 0), Point(1, 0), Point(0, 1)).incenter \
        == Point(1 - sqrt(2)/2, 1 - sqrt(2)/2)

def test_inradius():
    assert Triangle(Point(0, 0), Point(4, 0), Point(0, 3)).inradius == 1

def test_incircle():
    assert Triangle(Point(0, 0), Point(2, 0), Point(0, 2)).incircle \
        == Circle(Point(2 - sqrt(2), 2 - sqrt(2)), 2 - sqrt(2))

def test_exradii():
    t = Triangle(Point(0, 0), Point(6, 0), Point(0, 2))
    assert t.exradii[t.sides[2]] == (-2 + sqrt(10))

def test_medians():
    t = Triangle(Point(0, 0), Point(1, 0), Point(0, 1))
    assert t.medians[Point(0, 0)] == Segment(Point(0, 0), Point(S.Half, S.Half))

def test_medial():
    assert Triangle(Point(0, 0), Point(1, 0), Point(0, 1)).medial \
        == Triangle(Point(S.Half, 0), Point(S.Half, S.Half), Point(0, S.Half))

def test_nine_point_circle():
    assert Triangle(Point(0, 0), Point(1, 0), Point(0, 1)).nine_point_circle \
        == Circle(Point2D(Rational(1, 4), Rational(1, 4)), sqrt(2)/4)

def test_eulerline():
    assert Triangle(Point(0, 0), Point(1, 0), Point(0, 1)).eulerline \
        == Line(Point2D(0, 0), Point2D(S.Half, S.Half))
    assert Triangle(Point(0, 0), Point(10, 0), Point(5, 5*sqrt(3))).eulerline \
        == Point2D(5, 5*sqrt(3)/3)
    assert Triangle(Point(4, -6), Point(4, -1), Point(-3, 3)).eulerline \
        == Line(Point2D(Rational(64, 7), 3), Point2D(Rational(-29, 14), Rational(-7, 2)))

def test_intersection():
    poly1 = Triangle(Point(0, 0), Point(1, 0), Point(0, 1))
    poly2 = Polygon(Point(0, 1), Point(-5, 0),
                    Point(0, -4), Point(0, Rational(1, 5)),
                    Point(S.Half, -0.1), Point(1, 0), Point(0, 1))

    assert poly1.intersection(poly2) == [Point2D(Rational(1, 3), 0),
        Segment(Point(0, Rational(1, 5)), Point(0, 0)),
        Segment(Point(1, 0), Point(0, 1))]
    assert poly2.intersection(poly1) == [Point(Rational(1, 3), 0),
        Segment(Point(0, 0), Point(0, Rational(1, 5))),
        Segment(Point(1, 0), Point(0, 1))]
    assert poly1.intersection(Point(0, 0)) == [Point(0, 0)]
    assert poly1.intersection(Point(-12,  -43)) == []
    assert poly2.intersection(Line((-12, 0), (12, 0))) == [Point(-5, 0),
        Point(0, 0), Point(Rational(1, 3), 0), Point(1, 0)]
    assert poly2.intersection(Line((-12, 12), (12, 12))) == []
    assert poly2.intersection(Ray((-3, 4), (1, 0))) == [Segment(Point(1, 0),
        Point(0, 1))]
    assert poly2.intersection(Circle((0, -1), 1)) == [Point(0, -2),
        Point(0, 0)]
    assert poly1.intersection(poly1) == [Segment(Point(0, 0), Point(1, 0)),
        Segment(Point(0, 1), Point(0, 0)), Segment(Point(1, 0), Point(0, 1))]
    assert poly2.intersection(poly2) == [Segment(Point(-5, 0), Point(0, -4)),
        Segment(Point(0, -4), Point(0, Rational(1, 5))),
        Segment(Point(0, Rational(1, 5)), Point(S.Half, Rational(-1, 10))),
        Segment(Point(0, 1), Point(-5, 0)),
        Segment(Point(S.Half, Rational(-1, 10)), Point(1, 0)),
        Segment(Point(1, 0), Point(0, 1))]
    assert poly2.intersection(Triangle(Point(0, 1), Point(1, 0), Point(-1, 1))) \
        == [Point(Rational(-5, 7), Rational(6, 7)), Segment(Point2D(0, 1), Point(1, 0))]
    assert poly1.intersection(RegularPolygon((-12, -15), 3, 3)) == []


def test_parameter_value():
    t = Symbol('t')
    sq = Polygon((0, 0), (0, 1), (1, 1), (1, 0))
    assert sq.parameter_value((0.5, 1), t) == {t: Rational(3, 8)}
    q = Polygon((0, 0), (2, 1), (2, 4), (4, 0))
    assert q.parameter_value((4, 0), t) == {t: -6 + 3*sqrt(5)} # ~= 0.708

    raises(ValueError, lambda: sq.parameter_value((5, 6), t))
    raises(ValueError, lambda: sq.parameter_value(Circle(Point(0, 0), 1), t))


def test_issue_12966():
    poly = Polygon(Point(0, 0), Point(0, 10), Point(5, 10), Point(5, 5),
        Point(10, 5), Point(10, 0))
    t = Symbol('t')
    pt = poly.arbitrary_point(t)
    DELTA = 5/poly.perimeter
    assert [pt.subs(t, DELTA*i) for i in range(int(1/DELTA))] == [
        Point(0, 0), Point(0, 5), Point(0, 10), Point(5, 10),
        Point(5, 5), Point(10, 5), Point(10, 0), Point(5, 0)]


def test_second_moment_of_area():
    x, y = symbols('x, y')
    # triangle
    p1, p2, p3 = [(0, 0), (4, 0), (0, 2)]
    p = (0, 0)
    # equation of hypotenuse
    eq_y = (1-x/4)*2
    I_yy = integrate((x**2) * (integrate(1, (y, 0, eq_y))), (x, 0, 4))
    I_xx = integrate(1 * (integrate(y**2, (y, 0, eq_y))), (x, 0, 4))
    I_xy = integrate(x * (integrate(y, (y, 0, eq_y))), (x, 0, 4))

    triangle = Polygon(p1, p2, p3)

    assert (I_xx - triangle.second_moment_of_area(p)[0]) == 0
    assert (I_yy - triangle.second_moment_of_area(p)[1]) == 0
    assert (I_xy - triangle.second_moment_of_area(p)[2]) == 0

    # rectangle
    p1, p2, p3, p4=[(0, 0), (4, 0), (4, 2), (0, 2)]
    I_yy = integrate((x**2) * integrate(1, (y, 0, 2)), (x, 0, 4))
    I_xx = integrate(1 * integrate(y**2, (y, 0, 2)), (x, 0, 4))
    I_xy = integrate(x * integrate(y, (y, 0, 2)), (x, 0, 4))

    rectangle = Polygon(p1, p2, p3, p4)

    assert (I_xx - rectangle.second_moment_of_area(p)[0]) == 0
    assert (I_yy - rectangle.second_moment_of_area(p)[1]) == 0
    assert (I_xy - rectangle.second_moment_of_area(p)[2]) == 0


    r = RegularPolygon(Point(0, 0), 5, 3)
    assert r.second_moment_of_area() == (1875*sqrt(3)/S(32), 1875*sqrt(3)/S(32), 0)


def test_first_moment():
    a, b  = symbols('a, b', positive=True)
    # rectangle
    p1 = Polygon((0, 0), (a, 0), (a, b), (0, b))
    assert p1.first_moment_of_area() == (a*b**2/8, a**2*b/8)
    assert p1.first_moment_of_area((a/3, b/4)) == (-3*a*b**2/32, -a**2*b/9)

    p1 = Polygon((0, 0), (40, 0), (40, 30), (0, 30))
    assert p1.first_moment_of_area() == (4500, 6000)

    # triangle
    p2 = Polygon((0, 0), (a, 0), (a/2, b))
    assert p2.first_moment_of_area() == (4*a*b**2/81, a**2*b/24)
    assert p2.first_moment_of_area((a/8, b/6)) == (-25*a*b**2/648, -5*a**2*b/768)

    p2 = Polygon((0, 0), (12, 0), (12, 30))
    p2.first_moment_of_area() == (1600/3, -640/3)


def test_section_modulus_and_polar_second_moment_of_area():
    a, b = symbols('a, b', positive=True)
    x, y = symbols('x, y')
    rectangle = Polygon((0, b), (0, 0), (a, 0), (a, b))
    assert rectangle.section_modulus(Point(x, y)) == (a*b**3/12/(-b/2 + y), a**3*b/12/(-a/2 + x))
    assert rectangle.polar_second_moment_of_area() == a**3*b/12 + a*b**3/12

    convex = RegularPolygon((0, 0), 1, 6)
    assert convex.section_modulus() == (Rational(5, 8), sqrt(3)*Rational(5, 16))
    assert convex.polar_second_moment_of_area() == 5*sqrt(3)/S(8)

    concave = Polygon((0, 0), (1, 8), (3, 4), (4, 6), (7, 1))
    assert concave.section_modulus() == (Rational(-6371, 429), Rational(-9778, 519))
    assert concave.polar_second_moment_of_area() == Rational(-38669, 252)


def test_cut_section():
    # concave polygon
    p = Polygon((-1, -1), (1, Rational(5, 2)), (2, 1), (3, Rational(5, 2)), (4, 2), (5, 3), (-1, 3))
    l = Line((0, 0), (Rational(9, 2), 3))
    p1 = p.cut_section(l)[0]
    p2 = p.cut_section(l)[1]
    assert p1 == Polygon(
        Point2D(Rational(-9, 13), Rational(-6, 13)), Point2D(1, Rational(5, 2)), Point2D(Rational(24, 13), Rational(16, 13)),
        Point2D(Rational(12, 5), Rational(8, 5)), Point2D(3, Rational(5, 2)), Point2D(Rational(24, 7), Rational(16, 7)),
        Point2D(Rational(9, 2), 3), Point2D(-1, 3), Point2D(-1, Rational(-2, 3)))
    assert p2 == Polygon(Point2D(-1, -1), Point2D(Rational(-9, 13), Rational(-6, 13)), Point2D(Rational(24, 13), Rational(16, 13)),
        Point2D(2, 1), Point2D(Rational(12, 5), Rational(8, 5)), Point2D(Rational(24, 7), Rational(16, 7)), Point2D(4, 2), Point2D(5, 3),
        Point2D(Rational(9, 2), 3), Point2D(-1, Rational(-2, 3)))

    # convex polygon
    p = RegularPolygon(Point2D(0, 0), 6, 6)
    s = p.cut_section(Line((0, 0), slope=1))
    assert s[0] == Polygon(Point2D(-3*sqrt(3) + 9, -3*sqrt(3) + 9), Point2D(3, 3*sqrt(3)),
        Point2D(-3, 3*sqrt(3)), Point2D(-6, 0), Point2D(-9 + 3*sqrt(3), -9 + 3*sqrt(3)))
    assert s[1] == Polygon(Point2D(6, 0), Point2D(-3*sqrt(3) + 9, -3*sqrt(3) + 9),
        Point2D(-9 + 3*sqrt(3), -9 + 3*sqrt(3)), Point2D(-3, -3*sqrt(3)), Point2D(3, -3*sqrt(3)))

    # case where line does not intersects but coincides with the edge of polygon
    a, b = 20, 10
    t1, t2, t3, t4 = [(0, b), (0, 0), (a, 0), (a, b)]
    p = Polygon(t1, t2, t3, t4)
    p1, p2 = p.cut_section(Line((0, b), slope=0))
    assert p1 == None
    assert p2 == Polygon(Point2D(0, 10), Point2D(0, 0), Point2D(20, 0), Point2D(20, 10))

    p3, p4 = p.cut_section(Line((0, 0), slope=0))
    assert p3 == Polygon(Point2D(0, 10), Point2D(0, 0), Point2D(20, 0), Point2D(20, 10))
    assert p4 == None

    # case where the line does not intersect with a polygon at all
    raises(ValueError, lambda: p.cut_section(Line((0, a), slope=0)))

def test_type_of_triangle():
    # Isoceles triangle
    p1 = Polygon(Point(0, 0), Point(5, 0), Point(2, 4))
    assert p1.is_isosceles() == True
    assert p1.is_scalene() == False
    assert p1.is_equilateral() == False

    # Scalene triangle
    p2 = Polygon (Point(0, 0), Point(0, 2), Point(4, 0))
    assert p2.is_isosceles() == False
    assert p2.is_scalene() == True
    assert p2.is_equilateral() == False

    # Equilateral triagle
    p3 = Polygon(Point(0, 0), Point(6, 0), Point(3, sqrt(27)))
    assert p3.is_isosceles() == True
    assert p3.is_scalene() == False
    assert p3.is_equilateral() == True

def test_do_poly_distance():
    # Non-intersecting polygons
    square1 = Polygon (Point(0, 0), Point(0, 1), Point(1, 1), Point(1, 0))
    triangle1 = Polygon(Point(1, 2), Point(2, 2), Point(2, 1))
    assert square1._do_poly_distance(triangle1) == sqrt(2)/2

    # Polygons which sides intersect
    square2 = Polygon(Point(1, 0), Point(2, 0), Point(2, 1), Point(1, 1))
    with warns(UserWarning, \
               match="Polygons may intersect producing erroneous output"):
        assert square1._do_poly_distance(square2) == 0

    # Polygons which bodies intersect
    triangle2 = Polygon(Point(0, -1), Point(2, -1), Point(S.Half, S.Half))
    with warns(UserWarning, \
               match="Polygons may intersect producing erroneous output"):
        assert triangle2._do_poly_distance(square1) == 0
