
    MZd                         ddZ d Zy)   c                 v    | j                         } | j                  |||z         }|j                         }|| z
  S )ay  
    Takes as input a polynomial expression and the variable used to construct
    it and returns the difference between function's value when the input is
    incremented to 1 and the original function value. If you want an increment
    other than one supply it as a third argument.

    Examples
    ========

    >>> from sympy.abc import x, y, z
    >>> from sympy.series.kauers import finite_diff
    >>> finite_diff(x**2, x)
    2*x + 1
    >>> finite_diff(y**3 + 2*y**2 + 3*y + 4, y)
    3*y**2 + 7*y + 6
    >>> finite_diff(x**2 + 3*x + 8, x, 2)
    4*x + 10
    >>> finite_diff(z**3 + 8*z, z, 3)
    9*z**2 + 27*z + 51
    )expandsubs)
expressionvariable	incrementexpression2s       5/usr/lib/python3/dist-packages/sympy/series/kauers.pyfinite_diffr      s@    * ""$J//(Hy,@AK$$&K##    c                 v    | j                   }| j                  D ]  }|j                  |d   |d   dz         } |S )a  
    Takes as input a Sum instance and returns the difference between the sum
    with the upper index incremented by 1 and the original sum. For example,
    if S(n) is a sum, then finite_diff_kauers will return S(n + 1) - S(n).

    Examples
    ========

    >>> from sympy.series.kauers import finite_diff_kauers
    >>> from sympy import Sum
    >>> from sympy.abc import x, y, m, n, k
    >>> finite_diff_kauers(Sum(k, (k, 1, n)))
    n + 1
    >>> finite_diff_kauers(Sum(1/k, (k, 1, n)))
    1/(n + 1)
    >>> finite_diff_kauers(Sum((x*y**2), (x, 1, n), (y, 1, m)))
    (m + 1)**2*(n + 1)
    >>> finite_diff_kauers(Sum((x*y), (x, 1, m), (y, 1, n)))
    (m + 1)*(n + 1)
        r   )functionlimitsr   )sumr   ls      r
   finite_diff_kauersr      sA    * ||HZZ 3==1qvz23Or   N)r   )r   r    r   r
   <module>r      s   $4r   