
    MZd                     P    d Z ddlmZmZmZ ddlmZmZmZ ddl	m
Z
 d	dZd Zd Zy)
z1Gosper's algorithm for hypergeometric summation.     )SDummysymbols)Polyparallel_poly_from_exprfactor)is_sequencec                    t        | |f|dd      \  \  }}}|j                         |j                         }}|j                         |j                         }
}	|j                  ||	z  }}t	        d      }t        ||z   |||j                        }|j                  |
j                  |            }t        |j                         j                               }t        |      D ]%  }|j                  r|dk  s|j                  |       ' t        |      D ]~  }|j                  |
j!                  |            }|j#                  |      }|
j#                  |j!                  |             }
t%        d|dz         D ]  }||j!                  |       z  }  |j'                  |      }|s0|j)                         }|
j)                         }
|j)                         }||
|fS )a`  
    Compute the Gosper's normal form of ``f`` and ``g``.

    Explanation
    ===========

    Given relatively prime univariate polynomials ``f`` and ``g``,
    rewrite their quotient to a normal form defined as follows:

    .. math::
        \frac{f(n)}{g(n)} = Z \cdot \frac{A(n) C(n+1)}{B(n) C(n)}

    where ``Z`` is an arbitrary constant and ``A``, ``B``, ``C`` are
    monic polynomials in ``n`` with the following properties:

    1. `\gcd(A(n), B(n+h)) = 1 \forall h \in \mathbb{N}`
    2. `\gcd(B(n), C(n+1)) = 1`
    3. `\gcd(A(n), C(n)) = 1`

    This normal form, or rational factorization in other words, is a
    crucial step in Gosper's algorithm and in solving of difference
    equations. It can be also used to decide if two hypergeometric
    terms are similar or not.

    This procedure will return a tuple containing elements of this
    factorization in the form ``(Z*A, B, C)``.

    Examples
    ========

    >>> from sympy.concrete.gosper import gosper_normal
    >>> from sympy.abc import n

    >>> gosper_normal(4*n+5, 2*(4*n+1)*(2*n+3), n, polys=False)
    (1/4, n + 3/2, n + 1/4)

    T)field	extensionhdomainr      )r   LCmoniconer   r   r   	resultantcomposesetground_rootskeys
is_Integerremovesortedgcdshiftquorange
mul_groundas_expr)fgnpolyspqoptaAbBCZr   DRrootsridjs                        7/usr/lib/python3/dist-packages/sympy/concrete/gosper.pygosper_normalr7      s   L *	
A/KFQC 4461779qA4461779qA55!A#qAc
AQUAq,A	AIIaL!A %%'(EZ ||q1uLLO E] EE!''1"+EE!HEE!''1"+q!a% 	A!A	 	
QAIIKIIKIIKa7N    c                    ddl m}  || |      }|y|j                         \  }}t        |||      \  }}}|j	                  d      }t        |j                               }	t        |j                               }
t        |j                               }|	|
k7  s!|j                         |j                         k7  r|t        |	|
      z
  h}n]|	s||	z
  dz   t
        j                  h}nB||	z
  dz   |j                  |	dz
        |j                  |	dz
        z
  |j                         z  h}t        |      D ]%  }|j                  r|dk  s|j                  |       ' |syt        |      }t        d|dz   z  t              } |j!                         j"                  | }t%        |||      }||j	                  d      z  ||z  z
  |z
  }dd	lm}  ||j+                         |      }|y|j-                         j/                  |      }|D ]  }||vs|j/                  |d      } |j0                  ry|j-                         |z  |j-                         z  S )
a&  
    Compute Gosper's hypergeometric term for ``f``.

    Explanation
    ===========

    Suppose ``f`` is a hypergeometric term such that:

    .. math::
        s_n = \sum_{k=0}^{n-1} f_k

    and `f_k` does not depend on `n`. Returns a hypergeometric
    term `g_n` such that `g_{n+1} - g_n = f_n`.

    Examples
    ========

    >>> from sympy.concrete.gosper import gosper_term
    >>> from sympy import factorial
    >>> from sympy.abc import n

    >>> gosper_term((4*n + 1)*factorial(n)/factorial(2*n + 1), n)
    (-n - 1/2)/(n + 1/4)

    r   )	hypersimpNr   zc:%s)clsr   )solve)sympy.simplifyr:   as_numer_denomr7   r   r   degreer   maxZeronthr   r   r   r   r   
get_domaininjectr   sympy.solvers.solversr=   coeffsr!   subsis_zero)r"   r$   r:   r2   r&   r'   r*   r,   r-   NMKr/   r4   rG   r   xHr=   solutioncoeffs                        r6   gosper_termrQ   S   s   4 )!QAyDAqAq!$GAq!	A	!((*A	!((*A	!((*A	QADDFaddf$Q]OUQYUQYq1ua!e4addf<=V ||q1uHHQK AAVq1u%51F"Q\\^""F+FVQv&A	!''!*qsQA+QXXZ(H			"A ! ua A! 	yyyy{1}QYY[((r8   c                    d}t        |      r|\  }}}nd}t        | |      }|y|r| |z  }t        |      S | |dz   z  j                  |      | |z  j                  |      z
  }|t        j                  u r:	 | |dz   z  j                  ||      | |z  j                  ||      z
  }t        |      S t        |      S # t        $ r d}Y t        |      S w xY w)aB  
    Gosper's hypergeometric summation algorithm.

    Explanation
    ===========

    Given a hypergeometric term ``f`` such that:

    .. math ::
        s_n = \sum_{k=0}^{n-1} f_k

    and `f(n)` does not depend on `n`, returns `g_{n} - g(0)` where
    `g_{n+1} - g_n = f_n`, or ``None`` if `s_n` cannot be expressed
    in closed form as a sum of hypergeometric terms.

    Examples
    ========

    >>> from sympy.concrete.gosper import gosper_sum
    >>> from sympy import factorial
    >>> from sympy.abc import n, k

    >>> f = (4*k + 1)*factorial(k)/factorial(2*k + 1)
    >>> gosper_sum(f, (k, 0, n))
    (-factorial(n) + 2*factorial(2*n + 1))/factorial(2*n + 1)
    >>> _.subs(n, 2) == sum(f.subs(k, i) for i in [0, 1, 2])
    True
    >>> gosper_sum(f, (k, 3, n))
    (-60*factorial(n) + factorial(2*n + 1))/(60*factorial(2*n + 1))
    >>> _.subs(n, 5) == sum(f.subs(k, i) for i in [3, 4, 5])
    True

    References
    ==========

    .. [1] Marko Petkovsek, Herbert S. Wilf, Doron Zeilberger, A = B,
           AK Peters, Ltd., Wellesley, MA, USA, 1997, pp. 73--100

    FTNr   )r	   rQ   rH   r   NaNlimitNotImplementedErrorr   )r"   k
indefiniter)   r+   r#   results          r6   
gosper_sumrY      s    P J1~1a
AqAy1 &> QU)!!!Q'1Q3**Q*::QUU?QU)**1a0AaC;;q!3DD &>6&> ' &>s   9.B= =CCN)T)__doc__
sympy.corer   r   r   sympy.polysr   r   r   sympy.utilities.iterablesr	   r7   rQ   rY    r8   r6   <module>r_      s*    7 ( ( = = 1HVN)b?r8   