
    MZdl                     ,    d dl mZ d dlmZ ddZddZy)    )S)PolyNc                    |dnd}|r| }t        | g|i |} t        |g|i |}| j                  r|j                  st        d      | j                  |j                  k(  st        d      | j                  }| j	                         dk  s|j	                         dk  rdhS | j                         }|s|j                         n|}t               }|d   D ]  \  }	}
|d   D ]  \  }}
|	j	                         }|j	                         }||k7  r,|	j                         }|j                         }||z
  j                  s\|	j                  ||dz
  z        }|j                  ||dz
  z        }||z
  t        ||z        z  }|j                  s|dk  s||v r|dkD  r|	|j                  |      z
  j                  s|j                  |         |S )a=  Compute the *dispersion set* of two polynomials.

    For two polynomials `f(x)` and `g(x)` with `\deg f > 0`
    and `\deg g > 0` the dispersion set `\operatorname{J}(f, g)` is defined as:

    .. math::
        \operatorname{J}(f, g)
        & := \{a \in \mathbb{N}_0 | \gcd(f(x), g(x+a)) \neq 1\} \\
        &  = \{a \in \mathbb{N}_0 | \deg \gcd(f(x), g(x+a)) \geq 1\}

    For a single polynomial one defines `\operatorname{J}(f) := \operatorname{J}(f, f)`.

    Examples
    ========

    >>> from sympy import poly
    >>> from sympy.polys.dispersion import dispersion, dispersionset
    >>> from sympy.abc import x

    Dispersion set and dispersion of a simple polynomial:

    >>> fp = poly((x - 3)*(x + 3), x)
    >>> sorted(dispersionset(fp))
    [0, 6]
    >>> dispersion(fp)
    6

    Note that the definition of the dispersion is not symmetric:

    >>> fp = poly(x**4 - 3*x**2 + 1, x)
    >>> gp = fp.shift(-3)
    >>> sorted(dispersionset(fp, gp))
    [2, 3, 4]
    >>> dispersion(fp, gp)
    4
    >>> sorted(dispersionset(gp, fp))
    []
    >>> dispersion(gp, fp)
    -oo

    Computing the dispersion also works over field extensions:

    >>> from sympy import sqrt
    >>> fp = poly(x**2 + sqrt(5)*x - 1, x, domain='QQ<sqrt(5)>')
    >>> gp = poly(x**2 + (2 + sqrt(5))*x + sqrt(5), x, domain='QQ<sqrt(5)>')
    >>> sorted(dispersionset(fp, gp))
    [2]
    >>> sorted(dispersionset(gp, fp))
    [1, 4]

    We can even perform the computations for polynomials
    having symbolic coefficients:

    >>> from sympy.abc import a
    >>> fp = poly(4*x**4 + (4*a + 8)*x**3 + (a**2 + 6*a + 4)*x**2 + (a**2 + 2*a)*x, x)
    >>> sorted(dispersionset(fp))
    [0, 1]

    See Also
    ========

    dispersion

    References
    ==========

    .. [1] [ManWright94]_
    .. [2] [Koepf98]_
    .. [3] [Abramov71]_
    .. [4] [Man93]_
    FTz!Polynomials need to be univariatez(Polynomials must have the same generator   r   )r   is_univariate
ValueErrorgendegreefactor_listsetLCis_zerocoeff_monomialr   
is_integershiftadd)pqgensargssamer	   fpfqJsunusedtmnanbnanm1bnm1alphas                      8/usr/lib/python3/dist-packages/sympy/polys/dispersion.pydispersionsetr&      s   R M5tDQAQA??!//<== 55AEE>CDD
%%C 	xxzA~as
 
B $"B 	AU 	6A 	IAv
A
AAvBBG$$ ##C!A#J/D##C!A#J/DD[AadG+E##qyEQJ1ua!''%.099EE%L+	0 H    c                 d    t        | |g|i |}|st        j                  }|S t        |      }|S )a  Compute the *dispersion* of polynomials.

    For two polynomials `f(x)` and `g(x)` with `\deg f > 0`
    and `\deg g > 0` the dispersion `\operatorname{dis}(f, g)` is defined as:

    .. math::
        \operatorname{dis}(f, g)
        & := \max\{ J(f,g) \cup \{0\} \} \\
        &  = \max\{ \{a \in \mathbb{N} | \gcd(f(x), g(x+a)) \neq 1\} \cup \{0\} \}

    and for a single polynomial `\operatorname{dis}(f) := \operatorname{dis}(f, f)`.
    Note that we make the definition `\max\{\} := -\infty`.

    Examples
    ========

    >>> from sympy import poly
    >>> from sympy.polys.dispersion import dispersion, dispersionset
    >>> from sympy.abc import x

    Dispersion set and dispersion of a simple polynomial:

    >>> fp = poly((x - 3)*(x + 3), x)
    >>> sorted(dispersionset(fp))
    [0, 6]
    >>> dispersion(fp)
    6

    Note that the definition of the dispersion is not symmetric:

    >>> fp = poly(x**4 - 3*x**2 + 1, x)
    >>> gp = fp.shift(-3)
    >>> sorted(dispersionset(fp, gp))
    [2, 3, 4]
    >>> dispersion(fp, gp)
    4
    >>> sorted(dispersionset(gp, fp))
    []
    >>> dispersion(gp, fp)
    -oo

    The maximum of an empty set is defined to be `-\infty`
    as seen in this example.

    Computing the dispersion also works over field extensions:

    >>> from sympy import sqrt
    >>> fp = poly(x**2 + sqrt(5)*x - 1, x, domain='QQ<sqrt(5)>')
    >>> gp = poly(x**2 + (2 + sqrt(5))*x + sqrt(5), x, domain='QQ<sqrt(5)>')
    >>> sorted(dispersionset(fp, gp))
    [2]
    >>> sorted(dispersionset(gp, fp))
    [1, 4]

    We can even perform the computations for polynomials
    having symbolic coefficients:

    >>> from sympy.abc import a
    >>> fp = poly(4*x**4 + (4*a + 8)*x**3 + (a**2 + 6*a + 4)*x**2 + (a**2 + 2*a)*x, x)
    >>> sorted(dispersionset(fp))
    [0, 1]

    See Also
    ========

    dispersionset

    References
    ==========

    .. [1] [ManWright94]_
    .. [2] [Koepf98]_
    .. [3] [Abramov71]_
    .. [4] [Man93]_
    )r&   r   NegativeInfinitymax)r   r   r   r   r   js         r%   
dispersionr,      s@    X 	a*T*T*A H FHr'   )N)
sympy.corer   sympy.polysr   r&   r,    r'   r%   <module>r0      s     zzRr'   