
    MZd-                     4   d Z ddlmZ ddlmZ ddlmZ ddlmZ ddl	m
Z
 ddlmZmZmZmZmZ ddlmZ dd
Zej(                  d	fdZej(                  d	fdZej(                  d	fdZej(                  d	fdZej(                  d	fdZej(                  d	fdZy	)af  
Singularities
=============

This module implements algorithms for finding singularities for a function
and identifying types of functions.

The differential calculus methods in this module include methods to identify
the following function types in the given ``Interval``:
- Increasing
- Strictly Increasing
- Decreasing
- Strictly Decreasing
- Monotonic

    )Pow)S)Symbol)sympify)log)seccsccottancos)
filldedentNc                 R   ddl m} |,|j                  rt        j                  nt        j
                  }	 t        j                  }| j                  t        t        t        t        gt              j                  t              D ]L  }|j                  j                   rt"        |j                  j$                  s6| ||j&                  ||      z  }N | j                  t(              D ]  }| ||j*                  d   ||      z  } |S # t"        $ r t#        t-        d            w xY w)a  
    Find singularities of a given function.

    Parameters
    ==========

    expression : Expr
        The target function in which singularities need to be found.
    symbol : Symbol
        The symbol over the values of which the singularity in
        expression in being searched for.

    Returns
    =======

    Set
        A set of values for ``symbol`` for which ``expression`` has a
        singularity. An ``EmptySet`` is returned if ``expression`` has no
        singularities for any given value of ``Symbol``.

    Raises
    ======

    NotImplementedError
        Methods for determining the singularities of this function have
        not been developed.

    Notes
    =====

    This function does not find non-isolated singularities
    nor does it find branch points of the expression.

    Currently supported functions are:
        - univariate continuous (real or complex) functions

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Mathematical_singularity

    Examples
    ========

    >>> from sympy import singularities, Symbol, log
    >>> x = Symbol('x', real=True)
    >>> y = Symbol('y', real=False)
    >>> singularities(x**2 + x + 1, x)
    EmptySet
    >>> singularities(1/(x + 1), x)
    {-1}
    >>> singularities(1/(y**2 + 1), y)
    {-I, I}
    >>> singularities(1/(y**3 + 1), y)
    {-1, 1/2 - sqrt(3)*I/2, 1/2 + sqrt(3)*I/2}
    >>> singularities(log(x), x)
    {0}

    r   solvesetzl
            Methods for determining the singularities
            of this function have not been developed.)sympy.solvers.solvesetr   is_realr   Reals	ComplexesEmptySetrewriter   r	   r
   r   r   atomsr   expis_infiniteNotImplementedErroris_negativebaser   argsr   )
expressionsymboldomainr   singsis         >/usr/lib/python3/dist-packages/sympy/calculus/singularities.pysingularitiesr$      s    x 0~"NN;

##S#sC$8#>DDSI 	:Auu  ))uu  !&&&&99		:
 !!#& 	9AXaffQi88E	9 ;!* .9 #: ; 	;;s   BD 9AD D&c                 4   ddl m} t        |       } | j                  }|t	        |      dkD  rt        d      |xs |r|j                         n
t        d      }| j                  |      } | ||      |t        j                        }|j                  |      S )a  
    Helper function for functions checking function monotonicity.

    Parameters
    ==========

    expression : Expr
        The target function which is being checked
    predicate : function
        The property being tested for. The function takes in an integer
        and returns a boolean. The integer input is the derivative and
        the boolean result should be true if the property is being held,
        and false otherwise.
    interval : Set, optional
        The range of values in which we are testing, defaults to all reals.
    symbol : Symbol, optional
        The symbol present in expression which gets varied over the given range.

    It returns a boolean indicating whether the interval in which
    the function's derivative satisfies given predicate is a superset
    of the given interval.

    Returns
    =======

    Boolean
        True if ``predicate`` is true for all the derivatives when ``symbol``
        is varied in ``range``, False otherwise.

    r   r      zKThe function has not yet been implemented for all multivariate expressions.x)r   r   r   free_symbolslenr   popr   diffr   r   	is_subset)	r   	predicateintervalr   r   freevariable
derivativepredicate_intervals	            r#   monotonicity_helperr3   p   s    > 0$J""D~t9q=%5 
 >$((*&+H*J!)J"7177K011    c                      t        | d ||      S )a  
    Return whether the function is increasing in the given interval.

    Parameters
    ==========

    expression : Expr
        The target function which is being checked.
    interval : Set, optional
        The range of values in which we are testing (defaults to set of
        all real numbers).
    symbol : Symbol, optional
        The symbol present in expression which gets varied over the given range.

    Returns
    =======

    Boolean
        True if ``expression`` is increasing (either strictly increasing or
        constant) in the given ``interval``, False otherwise.

    Examples
    ========

    >>> from sympy import is_increasing
    >>> from sympy.abc import x, y
    >>> from sympy import S, Interval, oo
    >>> is_increasing(x**3 - 3*x**2 + 4*x, S.Reals)
    True
    >>> is_increasing(-x**2, Interval(-oo, 0))
    True
    >>> is_increasing(-x**2, Interval(0, oo))
    False
    >>> is_increasing(4*x**3 - 6*x**2 - 72*x + 30, Interval(-2, 3))
    False
    >>> is_increasing(x**2 + y, Interval(1, 2), x)
    True

    c                     | dk\  S Nr    r'   s    r#   <lambda>zis_increasing.<locals>.<lambda>   
    Q!V r4   r3   r   r.   r   s      r#   is_increasingr>      s    P z+;XvNNr4   c                      t        | d ||      S )at  
    Return whether the function is strictly increasing in the given interval.

    Parameters
    ==========

    expression : Expr
        The target function which is being checked.
    interval : Set, optional
        The range of values in which we are testing (defaults to set of
        all real numbers).
    symbol : Symbol, optional
        The symbol present in expression which gets varied over the given range.

    Returns
    =======

    Boolean
        True if ``expression`` is strictly increasing in the given ``interval``,
        False otherwise.

    Examples
    ========

    >>> from sympy import is_strictly_increasing
    >>> from sympy.abc import x, y
    >>> from sympy import Interval, oo
    >>> is_strictly_increasing(4*x**3 - 6*x**2 - 72*x + 30, Interval.Ropen(-oo, -2))
    True
    >>> is_strictly_increasing(4*x**3 - 6*x**2 - 72*x + 30, Interval.Lopen(3, oo))
    True
    >>> is_strictly_increasing(4*x**3 - 6*x**2 - 72*x + 30, Interval.open(-2, 3))
    False
    >>> is_strictly_increasing(-x**2, Interval(0, oo))
    False
    >>> is_strictly_increasing(-x**2 + y, Interval(-oo, 0), x)
    False

    c                     | dkD  S r7   r8   r9   s    r#   r:   z(is_strictly_increasing.<locals>.<lambda>   
    QU r4   r<   r=   s      r#   is_strictly_increasingrB          P z?HfMMr4   c                      t        | d ||      S )a  
    Return whether the function is decreasing in the given interval.

    Parameters
    ==========

    expression : Expr
        The target function which is being checked.
    interval : Set, optional
        The range of values in which we are testing (defaults to set of
        all real numbers).
    symbol : Symbol, optional
        The symbol present in expression which gets varied over the given range.

    Returns
    =======

    Boolean
        True if ``expression`` is decreasing (either strictly decreasing or
        constant) in the given ``interval``, False otherwise.

    Examples
    ========

    >>> from sympy import is_decreasing
    >>> from sympy.abc import x, y
    >>> from sympy import S, Interval, oo
    >>> is_decreasing(1/(x**2 - 3*x), Interval.open(S(3)/2, 3))
    True
    >>> is_decreasing(1/(x**2 - 3*x), Interval.open(1.5, 3))
    True
    >>> is_decreasing(1/(x**2 - 3*x), Interval.Lopen(3, oo))
    True
    >>> is_decreasing(1/(x**2 - 3*x), Interval.Ropen(-oo, S(3)/2))
    False
    >>> is_decreasing(1/(x**2 - 3*x), Interval.Ropen(-oo, 1.5))
    False
    >>> is_decreasing(-x**2, Interval(-oo, 0))
    False
    >>> is_decreasing(-x**2 + y, Interval(-oo, 0), x)
    False

    c                     | dk  S r7   r8   r9   s    r#   r:   zis_decreasing.<locals>.<lambda>#  r;   r4   r<   r=   s      r#   is_decreasingrF      s    X z+;XvNNr4   c                      t        | d ||      S )aZ  
    Return whether the function is strictly decreasing in the given interval.

    Parameters
    ==========

    expression : Expr
        The target function which is being checked.
    interval : Set, optional
        The range of values in which we are testing (defaults to set of
        all real numbers).
    symbol : Symbol, optional
        The symbol present in expression which gets varied over the given range.

    Returns
    =======

    Boolean
        True if ``expression`` is strictly decreasing in the given ``interval``,
        False otherwise.

    Examples
    ========

    >>> from sympy import is_strictly_decreasing
    >>> from sympy.abc import x, y
    >>> from sympy import S, Interval, oo
    >>> is_strictly_decreasing(1/(x**2 - 3*x), Interval.Lopen(3, oo))
    True
    >>> is_strictly_decreasing(1/(x**2 - 3*x), Interval.Ropen(-oo, S(3)/2))
    False
    >>> is_strictly_decreasing(1/(x**2 - 3*x), Interval.Ropen(-oo, 1.5))
    False
    >>> is_strictly_decreasing(-x**2, Interval(-oo, 0))
    False
    >>> is_strictly_decreasing(-x**2 + y, Interval(-oo, 0), x)
    False

    c                     | dk  S r7   r8   r9   s    r#   r:   z(is_strictly_decreasing.<locals>.<lambda>N  rA   r4   r<   r=   s      r#   is_strictly_decreasingrI   &  rC   r4   c                 (   ddl m} t        |       } | j                  }|t	        |      dkD  rt        d      |xs |r|j                         n
t        d      } || j                  |      ||      }|j                  |      t        j                  u S )a  
    Return whether the function is monotonic in the given interval.

    Parameters
    ==========

    expression : Expr
        The target function which is being checked.
    interval : Set, optional
        The range of values in which we are testing (defaults to set of
        all real numbers).
    symbol : Symbol, optional
        The symbol present in expression which gets varied over the given range.

    Returns
    =======

    Boolean
        True if ``expression`` is monotonic in the given ``interval``,
        False otherwise.

    Raises
    ======

    NotImplementedError
        Monotonicity check has not been implemented for the queried function.

    Examples
    ========

    >>> from sympy import is_monotonic
    >>> from sympy.abc import x, y
    >>> from sympy import S, Interval, oo
    >>> is_monotonic(1/(x**2 - 3*x), Interval.open(S(3)/2, 3))
    True
    >>> is_monotonic(1/(x**2 - 3*x), Interval.open(1.5, 3))
    True
    >>> is_monotonic(1/(x**2 - 3*x), Interval.Lopen(3, oo))
    True
    >>> is_monotonic(x**3 - 3*x**2 + 4*x, S.Reals)
    True
    >>> is_monotonic(-x**2, S.Reals)
    False
    >>> is_monotonic(x**2 + y + 1, Interval(1, 2), x)
    True

    r   r   r&   zKis_monotonic has not yet been implemented for all multivariate expressions.r'   )r   r   r   r(   r)   r   r*   r   r+   intersectionr   r   )r   r.   r   r   r/   r0   turning_pointss          r#   is_monotonicrM   Q  s    ` 0$J""D~#d)a-!1
 	

 >$((*&+Hjooh78LN  0AJJ>>r4   )N)__doc__sympy.core.powerr   sympy.core.singletonr   sympy.core.symbolr   sympy.core.sympifyr   &sympy.functions.elementary.exponentialr   (sympy.functions.elementary.trigonometricr   r	   r
   r   r   sympy.utilities.miscr   r$   r   r3   r>   rB   rF   rI   rM   r8   r4   r#   <module>rV      s   " ! " $ & 6 L L +M;j 9: .2b ()wwt (OV 12 (NV ()wwt ,O^ 12 (NV '(ggd =?r4   